Heckerman D E, Nathwani B N
Department of Computer Science, University of California, Los Angeles.
Methods Inf Med. 1992 Jun;31(2):106-16.
We address practical issues concerning the construction and use of decision-theoretic or normative expert systems for diagnosis. In particular, we examine Pathfinder, a normative expert system that assists surgical pathologists with the diagnosis of lymph-node diseases, and discuss the representation of dependencies among pieces of evidence within this system. We describe the belief network, a graphical representation of probabilistic dependencies. We see how Pathfinder uses a belief network to construct differential diagnosis efficiently, even when there are dependencies among pieces of evidence. In addition, we introduce an extension of the belief-network representation called a similarity network, a tool for constructing large and complex belief networks. The representation allows a user to construct independent belief networks for subsets of a given domain. A valid belief network for the entire domain can then be constructed from the individual belief networks. We also introduce the partition, a graphical representation that facilitates the assessment of probabilities associated with a belief network. We show that the similarity-network and partition representations made practical the construction of Pathfinder.
我们探讨了有关构建和使用用于诊断的决策理论或规范性专家系统的实际问题。特别是,我们研究了Pathfinder,这是一个协助外科病理学家诊断淋巴结疾病的规范性专家系统,并讨论了该系统中证据片段之间的依赖关系表示。我们描述了信念网络,这是一种概率依赖关系的图形表示。我们看到Pathfinder如何使用信念网络有效地构建鉴别诊断,即使证据片段之间存在依赖关系。此外,我们引入了信念网络表示的一种扩展,称为相似性网络,这是一种用于构建大型复杂信念网络的工具。这种表示允许用户为给定领域的子集构建独立的信念网络。然后可以从各个信念网络构建整个领域的有效信念网络。我们还引入了划分,这是一种便于评估与信念网络相关概率的图形表示。我们表明,相似性网络和划分表示使Pathfinder的构建变得切实可行。