Robitaille M, Dubé M-C, Weisnagel S J, Prud'homme D, Massicotte D, Péronnet F, Lavoie C
Département de chimie-biologie et des sciences de l'activité physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7.
J Appl Physiol (1985). 2007 Jul;103(1):119-24. doi: 10.1152/japplphysiol.01462.2006. Epub 2007 Apr 12.
Substrate oxidation and the respective contributions of exogenous glucose, glucose released from the liver, and muscle glycogen oxidation were measured by indirect respiratory calorimetry combined with tracer technique in eight control subjects and eight diabetic patients (5 men and 3 women in both groups) of similar age, height, body mass, and maximal oxygen uptake, over a 60-min exercise period on cycle ergometer at 50.8% (SD 4.0) maximal oxygen uptake [131.0 W (SD 38.2)]. The subjects and patients ingested a breakfast (containing approximately 80 g of carbohydrates) 3 h before and 30 g of glucose (labeled with 13C) 15 min before the beginning of exercise. The diabetic patients also received their usual insulin dose [Humalog = 9.1 U (SD 0.9); Humulin N = 13.9 U (SD 4.4)] immediately before the breakfast. Over the last 30 min of exercise, the oxidation of carbohydrate [1.32 g/min (SD 0.48) and 1.42 g/min (SD 0.63)] and fat [0.33 g/min (SD 0.10) and 0.30 g/min (SD 0.10)] and their contribution to the energy yield were not significantly different in the control subjects and diabetic patients. Exogenous glucose oxidation was also not significantly different in the control subjects and diabetic patients [6.3 g/30 min (SD 1.3) and 5.2 g/30 min (SD 1.6), respectively]. In contrast, the oxidation of plasma glucose and oxidation of glucose released from the liver were significantly lower in the diabetic patients than in control subjects [14.5 g/30 min (SD 4.3) and 9.3 g/30 min (SD 2.8) vs. 27.9 g/30 min (SD 13.3) and 21.6 g/30 min (SD 12.8), respectively], whereas that of muscle glycogen was significantly higher [28.1 g/30 min (SD 15.5) vs. 11.6 g/30 min (SD 8.1)]. These data indicate that, compared with control subjects, in diabetic patients fed glucose before exercise, substrate oxidation and exogenous glucose oxidation overall are similar but plasma glucose oxidation is lower; this is associated with a compensatory higher utilization of muscle glycogen.
在8名年龄、身高、体重和最大摄氧量相似的健康对照者和8名糖尿病患者(两组均为5名男性和3名女性)中,采用间接呼吸量热法结合示踪技术,在功率自行车上以50.8%(标准差4.0)最大摄氧量[131.0瓦(标准差38.2)]进行60分钟运动期间,测量底物氧化以及外源性葡萄糖、肝脏释放的葡萄糖和肌肉糖原氧化的各自贡献。受试者和患者在运动开始前3小时摄入早餐(含约80克碳水化合物),并在运动开始前15分钟摄入30克葡萄糖(用13C标记)。糖尿病患者在早餐前还立即注射了常规剂量的胰岛素[优泌乐=9.1单位(标准差0.9);优泌林N=13.9单位(标准差4.4)]。在运动的最后30分钟,碳水化合物[1.32克/分钟(标准差0.48)和1.42克/分钟(标准差0.63)]和脂肪[0.33克/分钟(标准差0.10)和0.30克/分钟(标准差0.10)]的氧化及其对能量产生的贡献在健康对照者和糖尿病患者中无显著差异。外源性葡萄糖氧化在健康对照者和糖尿病患者中也无显著差异[分别为6.3克/30分钟(标准差1.3)和5.2克/30分钟(标准差1.6)]。相比之下,糖尿病患者血浆葡萄糖氧化和肝脏释放的葡萄糖氧化显著低于健康对照者[分别为14.5克/30分钟(标准差4.3)和9.3克/30分钟(标准差2.8),而健康对照者分别为27.9克/30分钟(标准差13.3)和21.6克/30分钟(标准差12.8)],而肌肉糖原氧化则显著更高[28.1克/30分钟(标准差15.5),而健康对照者为11.6克/30分钟(标准差8.1)]。这些数据表明,与健康对照者相比,运动前摄入葡萄糖的糖尿病患者,底物氧化和外源性葡萄糖氧化总体相似,但血浆葡萄糖氧化较低;这与肌肉糖原的代偿性更高利用有关。