Suppr超能文献

霍夫迈斯特盐对表面张力的影响源于阴离子和阳离子在本体水与空气-水界面之间的分配。

Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface.

作者信息

Pegram Laurel M, Record M Thomas

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

J Phys Chem B. 2007 May 17;111(19):5411-7. doi: 10.1021/jp070245z. Epub 2007 Apr 14.

Abstract

We apply a recently developed surface-bulk partitioning model to interpret the effects of individual Hofmeister cations and anions on the surface tension of water. The most surface-excluded salt (Na2SO4) provides a minimum estimate for the number of water molecules per unit area of the surface region of 0.2 H2O A-2. This corresponds to a lower bound thickness of the surface region of approximately 6 A, which we assume is a property of this region and not of the salt investigated. At salt concentrations < or = 1 m, single-ion partition coefficients Kp,i, defined relative to Kp,Na+ = Kp,SO42- = 0, are found to be independent of bulk salt concentration and additive for different salt ions. Semiquantitative agreement with surface-sensitive spectroscopy data and molecular dynamics simulations is attained. In most cases, the rank orders of Kp,i for both anions and cations follow the conventional Hofmeister series, qualitative rankings of ions based on their effects on protein processes (folding, precipitation, assembly). Most anions that favor processes that expose protein surface to water (e.g., SCN-), and hence must interact favorably with (i.e., accumulate at) protein surface, are also accumulated at the air-water interface (Kp >1, e.g., Kp,SCN- =1.6). Most anions that favor processes that remove protein surface from water (e.g., F-), and hence are excluded from protein surface, are also excluded from the air-water interface (Kp,F- = 0.5). The guanidinium cation, a strong protein denaturant and therefore accumulated at the protein surface exposed in unfolding, is somewhat excluded from the air-water surface (Kp,GuH+ = 0.7), but is much less excluded than alkali metal cations (e.g., Kp,Na+ identical with 0, Kp,K+ = 0.1). Hence, cation Kp values for the air-water surface appear shifted (toward exclusion) as compared with values inferred for interactions of these cations with protein surface.

摘要

我们应用最近开发的表面-本体分配模型来解释单个霍夫迈斯特阳离子和阴离子对水表面张力的影响。最被表面排斥的盐(Na2SO4)为表面区域每单位面积的水分子数提供了一个最小估计值,即0.2 H2O Å-2。这对应于表面区域约6 Å的下限厚度,我们认为这是该区域的一个特性,而非所研究盐的特性。在盐浓度≤1 m时,相对于Kp,Na+ = Kp,SO42- = 0定义的单离子分配系数Kp,i,被发现与本体盐浓度无关,且对于不同的盐离子具有加和性。与表面敏感光谱数据和分子动力学模拟达成了半定量的一致性。在大多数情况下,阴离子和阳离子的Kp,i排序都遵循传统的霍夫迈斯特序列,即基于离子对蛋白质过程(折叠、沉淀、组装)的影响的定性排序。大多数有利于将蛋白质表面暴露于水的过程的阴离子(例如,SCN-),因此必须与蛋白质表面有良好的相互作用(即积累在蛋白质表面),也会在空气-水界面积累(Kp >1,例如,Kp,SCN- = 1.6)。大多数有利于将蛋白质表面从水中去除的过程的阴离子(例如,F-),因此被排除在蛋白质表面之外,也被排除在空气-水界面之外(Kp,F- = 0.5)。胍阳离子是一种强蛋白质变性剂,因此在蛋白质展开时暴露的表面积累,但在空气-水表面被略微排斥(Kp,GuH+ = 0.7),但比碱金属阳离子的排斥程度小得多(例如,Kp,Na+ = 0,Kp,K+ = 0.1)。因此,与这些阳离子与蛋白质表面相互作用所推断的值相比,空气-水表面的阳离子Kp值似乎发生了偏移(趋向于排斥)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验