Suppr超能文献

体积学习算法显著改进了用于预测外源性雌激素雌激素活性的偏最小二乘模型。

Volume learning algorithm significantly improved PLS model for predicting the estrogenic activity of xenoestrogens.

作者信息

Kovalishyn Vasyl V, Kholodovych Vladyslav, Tetko Igor V, Welsh William J

机构信息

Institute of Bioorganic Chemistry and Petrochemistry, Kyiv, Murmanska 1, 02660, Ukraine.

出版信息

J Mol Graph Model. 2007 Sep;26(2):591-4. doi: 10.1016/j.jmgm.2007.03.005. Epub 2007 Mar 19.

Abstract

Volume learning algorithm (VLA) artificial neural network and partial least squares (PLS) methods were compared using the leave-one-out cross-validation procedure for prediction of relative potency of xenoestrogenic compounds to the estrogen receptor. Using Wilcoxon signed rank test we showed that VLA outperformed PLS by producing models with statistically superior results for a structurally diverse set of compounds comprising eight chemical families. Thus, CoMFA/VLA models are successful in prediction of the endocrine disrupting potential of environmental pollutants and can be effectively applied for testing of prospective chemicals prior their exposure to the environment.

摘要

使用留一法交叉验证程序比较了体积学习算法(VLA)人工神经网络和偏最小二乘法(PLS),以预测异雌激素化合物对雌激素受体的相对效力。通过威尔科克森符号秩检验,我们表明,对于包含八个化学家族的结构多样的化合物集,VLA通过产生具有统计学上更优结果的模型,其表现优于PLS。因此,比较分子场分析/体积学习算法(CoMFA/VLA)模型在预测环境污染物的内分泌干扰潜力方面是成功的,并且可以有效地应用于在潜在化学品暴露于环境之前对其进行测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验