Suppr超能文献

使用三维定量构效关系、分子对接和分子动力学对新型稠合苯并氮杂卓作为选择性多巴胺 D3 受体拮抗剂的研究。

Studies of new fused benzazepine as selective dopamine D3 receptor antagonists using 3D-QSAR, molecular docking and molecular dynamics.

作者信息

Liu Jing, Li Yan, Zhang Shuwei, Xiao Zhengtao, Ai Chunzhi

机构信息

School of Chemical Engineering, Dalian University of Technology, Dalian, 116012, Liaoning, China; E-Mails:

出版信息

Int J Mol Sci. 2011 Feb 18;12(2):1196-221. doi: 10.3390/ijms12021196.

Abstract

In recent years, great interest has been paid to the development of compounds with high selectivity for central dopamine (DA) D3 receptors, an interesting therapeutic target in the treatment of different neurological disorders. In the present work, based on a dataset of 110 collected benzazepine (BAZ) DA D3 antagonists with diverse kinds of structures, a variety of in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), homology modeling, molecular docking and molecular dynamics (MD) were carried out to reveal the requisite 3D structural features for activity. Our results show that both the receptor-based (Q(2) = 0.603, R(2) (ncv) = 0.829, R(2) (pre) = 0.690, SEE = 0.316, SEP = 0.406) and ligand-based 3D-QSAR models (Q(2) = 0.506, R(2) (ncv) =0.838, R(2) (pre) = 0.794, SEE = 0.316, SEP = 0.296) are reliable with proper predictive capacity. In addition, a combined analysis between the CoMFA, CoMSIA contour maps and MD results with a homology DA receptor model shows that: (1) ring-A, position-2 and R(3) substituent in ring-D are crucial in the design of antagonists with higher activity; (2) more bulky R(1) substituents (at position-2 of ring-A) of antagonists may well fit in the binding pocket; (3) hydrophobicity represented by MlogP is important for building satisfactory QSAR models; (4) key amino acids of the binding pocket are CYS101, ILE105, LEU106, VAL151, PHE175, PHE184, PRO254 and ALA251. To our best knowledge, this work is the first report on 3D-QSAR modeling of the new fused BAZs as DA D3 antagonists. These results might provide information for a better understanding of the mechanism of antagonism and thus be helpful in designing new potent DA D3 antagonists.

摘要

近年来,人们对开发对中枢多巴胺(DA)D3受体具有高选择性的化合物产生了浓厚兴趣,该受体是治疗多种神经疾病的一个有趣的治疗靶点。在本研究中,基于收集到的110种具有不同结构的苯并氮杂卓(BAZ)类DA D3拮抗剂数据集,开展了多种计算机模拟建模方法,包括比较分子场分析(CoMFA)、比较相似性指数分析(CoMSIA)、同源建模、分子对接和分子动力学(MD),以揭示活性所需的三维结构特征。我们的结果表明,基于受体的三维定量构效关系模型(交叉验证系数Q(2)=0.603,非交互验证决定系数R(2)(ncv)=0.829,外部验证决定系数R(2)(pre)=0.690,标准估计误差SEE=0.316,预测标准误差SEP=0.406)和基于配体的三维定量构效关系模型(Q(2)=0.506,R(2)(ncv)=0.838,R(2)(pre)=0.794,SEE=0.316,SEP=0.296)都具有可靠的预测能力。此外,CoMFA、CoMSIA等高线图与MD结果以及同源DA受体模型之间的联合分析表明:(1)A环、2位以及D环上的R(3)取代基在设计高活性拮抗剂时至关重要;(2)拮抗剂中更大体积的R(1)取代基(在A环的2位)可能更适合结合口袋;(3)以MlogP表示的疏水性对于构建令人满意的三维定量构效关系模型很重要;(4)结合口袋的关键氨基酸是CYS101、ILE105、LEU106、VAL151、PHE175、PHE184、PRO254和ALA251。据我们所知,这项工作是关于新型稠合BAZs作为DA D3拮抗剂的三维定量构效关系建模的首次报道。这些结果可能为更好地理解拮抗机制提供信息,从而有助于设计新的强效DA D3拮抗剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f229/3083700/a818f9b231ac/ijms-12-01196f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验