Suppr超能文献

使用贝叶斯网络诊断乳腺癌:一项案例研究。

Diagnosis of breast cancer using Bayesian networks: a case study.

作者信息

Cruz-Ramírez Nicandro, Acosta-Mesa Héctor Gabriel, Carrillo-Calvet Humberto, Nava-Fernández Luis Alonso, Barrientos-Martínez Rocío Erandi

机构信息

Facultad de Física e Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Col. Centro, C. P. 91000 Xalapa, Veracruz, Mexico.

出版信息

Comput Biol Med. 2007 Nov;37(11):1553-64. doi: 10.1016/j.compbiomed.2007.02.003. Epub 2007 Apr 16.

Abstract

We evaluate the effectiveness of seven Bayesian network classifiers as potential tools for the diagnosis of breast cancer using two real-world databases containing fine-needle aspiration of the breast lesion cases collected by a single observer and multiple observers, respectively. The results show a certain ingredient of subjectivity implicitly contained in these data: we get an average accuracy of 93.04% for the former and 83.31% for the latter. These findings suggest that observers see different things when looking at the samples in the microscope; a situation that significantly diminishes the performance of these classifiers in diagnosing such a disease.

摘要

我们使用两个现实世界的数据库来评估七种贝叶斯网络分类器作为诊断乳腺癌潜在工具的有效性,这两个数据库分别包含由一名观察者和多名观察者收集的乳腺病变病例的细针穿刺样本。结果表明这些数据中隐含着一定程度的主观性:前者的平均准确率为93.04%,后者为83.31%。这些发现表明,观察者在显微镜下观察样本时看到的东西不同;这种情况显著降低了这些分类器在诊断此类疾病时的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验