Cruz-Ramírez Nicandro, Acosta-Mesa Héctor Gabriel, Carrillo-Calvet Humberto, Nava-Fernández Luis Alonso, Barrientos-Martínez Rocío Erandi
Facultad de Física e Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Col. Centro, C. P. 91000 Xalapa, Veracruz, Mexico.
Comput Biol Med. 2007 Nov;37(11):1553-64. doi: 10.1016/j.compbiomed.2007.02.003. Epub 2007 Apr 16.
We evaluate the effectiveness of seven Bayesian network classifiers as potential tools for the diagnosis of breast cancer using two real-world databases containing fine-needle aspiration of the breast lesion cases collected by a single observer and multiple observers, respectively. The results show a certain ingredient of subjectivity implicitly contained in these data: we get an average accuracy of 93.04% for the former and 83.31% for the latter. These findings suggest that observers see different things when looking at the samples in the microscope; a situation that significantly diminishes the performance of these classifiers in diagnosing such a disease.
我们使用两个现实世界的数据库来评估七种贝叶斯网络分类器作为诊断乳腺癌潜在工具的有效性,这两个数据库分别包含由一名观察者和多名观察者收集的乳腺病变病例的细针穿刺样本。结果表明这些数据中隐含着一定程度的主观性:前者的平均准确率为93.04%,后者为83.31%。这些发现表明,观察者在显微镜下观察样本时看到的东西不同;这种情况显著降低了这些分类器在诊断此类疾病时的性能。