Suppr超能文献

使用均值-方差模型在寡核苷酸阵列中对小样本量进行差异基因表达评估。

Assessing differential gene expression with small sample sizes in oligonucleotide arrays using a mean-variance model.

作者信息

Hu Jianhua, Wright Fred A

机构信息

Department of Biostatistics and Applied Mathematics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009, USA.

出版信息

Biometrics. 2007 Mar;63(1):41-9. doi: 10.1111/j.1541-0420.2006.00675.x.

Abstract

The identification of the genes that are differentially expressed in two-sample microarray experiments remains a difficult problem when the number of arrays is very small. We discuss the implications of using ordinary t-statistics and examine other commonly used variants. For oligonucleotide arrays with multiple probes per gene, we introduce a simple model relating the mean and variance of expression, possibly with gene-specific random effects. Parameter estimates from the model have natural shrinkage properties that guard against inappropriately small variance estimates, and the model is used to obtain a differential expression statistic. A limiting value to the positive false discovery rate (pFDR) for ordinary t-tests provides motivation for our use of the data structure to improve variance estimates. Our approach performs well compared to other proposed approaches in terms of the false discovery rate.

摘要

在微阵列实验中,当阵列数量非常少时,识别在两个样本中差异表达的基因仍然是一个难题。我们讨论了使用普通t统计量的影响,并研究了其他常用的变体。对于每个基因有多个探针的寡核苷酸阵列,我们引入了一个简单的模型,该模型将表达的均值和方差联系起来,可能还包含基因特异性随机效应。该模型的参数估计具有自然的收缩特性,可防止方差估计过小,并且该模型用于获得差异表达统计量。普通t检验的正错误发现率(pFDR)的极限值为我们利用数据结构改进方差估计提供了动机。在错误发现率方面,我们的方法与其他提出的方法相比表现良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验