Suppr超能文献

Enhanced T-ray signal classification using wavelet preprocessing.

作者信息

Yin X X, Kong K M, Lim J W, Ng B W-H, Ferguson B, Mickan S P, Abbott D

机构信息

Centre for Biomedical Engineering and School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.

出版信息

Med Biol Eng Comput. 2007 Jun;45(6):611-6. doi: 10.1007/s11517-007-0185-y. Epub 2007 Apr 21.

Abstract

This study demonstrates the application of one-dimensional discrete wavelet transforms in the classification of T-ray pulsed signals. Fast Fourier transforms (FFTs) are used as a feature extraction tool and a Mahalanobis distance classifier is employed for classification. Soft threshold wavelet shrinkage de-noising is used and plays an important role in de-noising and reconstruction of T-ray pulsed signals. An iterative algorithm is applied to obtain three optimal frequency components and to achieve preferred classification performance.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验