Ancillo G, Gadea J, Forment J, Guerri J, Navarro L
Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada-Náquera, Km. 4.5, 46113 Moncada (Valencia), Spain.
J Exp Bot. 2007;58(8):1927-33. doi: 10.1093/jxb/erm054. Epub 2007 Apr 23.
In recent years, class prediction experiments have been largely developed in cancer research with the aim of classifying unknown samples by examining their expression signature. In natural populations, a significant component of gene expression variability is also heritable. Citrus species are an ideal model to accomplish the study of these questions in plants, due to the existence of varieties derived from somatic mutations that are likely to differ from each other by one or a few point mutations but are phenotypically indistinguishable at early vegetative stages. The small genetic variability existing among these varieties makes molecular markers ineffective in distinguishing genotypes within a particular species. Gene expression profiles have been used to predict mandarin clementine varieties (Citrus clementina Hort. ex Tan.) by means of two independent supervised learning algorithms: Support Vector Machines and Prediction Analysis of Microarrays. The results show that transcriptional variation is variety-dependent in citrus, and supervised clustering methods may correctly assign blind samples to varieties when both training and test samples are under the same experimental conditions.
近年来,在癌症研究中,类别预测实验得到了很大发展,其目的是通过检查未知样本的表达特征来对其进行分类。在自然种群中,基因表达变异性的一个重要组成部分也是可遗传的。柑橘属物种是在植物中完成这些问题研究的理想模型,因为存在由体细胞突变产生的品种,这些品种可能彼此相差一个或几个点突变,但在早期营养阶段表型上无法区分。这些品种之间存在的小遗传变异性使得分子标记在区分特定物种内的基因型时无效。基因表达谱已被用于通过两种独立的监督学习算法预测温州蜜柑品种(Citrus clementina Hort. ex Tan.):支持向量机和微阵列预测分析。结果表明,柑橘中的转录变异是品种依赖性的,并且当训练样本和测试样本处于相同实验条件下时,监督聚类方法可以将盲样本正确地分配到品种中。