Suppr超能文献

间歇冲刺训练的骨骼肌中小动脉重塑引起的血流动力学改变的计算网络模型预测

Computational network model prediction of hemodynamic alterations due to arteriolar remodeling in interval sprint trained skeletal muscle.

作者信息

Binder Kyle W, Murfee Walter L, Song Ji, Laughlin M Harold, Price Richard J

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA.

出版信息

Microcirculation. 2007 Apr-May;14(3):181-92. doi: 10.1080/10739680601139237.

Abstract

OBJECTIVES

Exercise training is known to enhance skeletal muscle blood flow capacity, with high-intensity interval sprint training (IST) primarily affecting muscles with a high proportion of fast twitch glycolytic fibers. The objective of this study was to determine the relative contributions of new arteriole formation and lumenal arteriolar remodeling to enhanced flow capacity and the impact of these adaptations on local microvascular hemodynamics deep within the muscle.

METHODS

The authors studied arteriolar adaptation in the white/mixed-fiber portion of gastrocnemius muscles of IST (6 bouts of running/day; 2.5 min/bout; 60 m/min speed; 15% grade; 4.5 min rest between bouts; 5 training days/wk; 10 wks total) and sedentary (SED) control rats using whole-muscle Microfil casts. Dimensional and topological data were then used to construct a series of computational hemodynamic network models that incorporated physiological red blood cell distributions and hematocrit and diameter dependent apparent viscosities.

RESULTS

In comparison to SED controls, IST elicited a significant increase in arterioles/order in the 3A through 6A generations. Predicted IST and SED flows through the 2A generation agreed closely with in vivo measurements made in a previous study, illustrating the accuracy of the model. IST shifted the bulk of the pressure drop across the network from the 3As to the 4As and 5As, and flow capacity increased from 0.7 mL/min in SED to 1.5 mL/min in IST when a driving pressure of 80 mmHg was applied.

CONCLUSIONS

The primary adaptation to IST is an increase in arterioles in the 3A through 6A generations, which, in turn, creates an approximate doubling of flow capacity and a deeper penetration of high pressure into the arteriolar network.

摘要

目的

运动训练可增强骨骼肌血流能力,高强度间歇冲刺训练(IST)主要影响快肌糖酵解纤维比例高的肌肉。本研究的目的是确定新小动脉形成和小动脉管腔重塑对血流能力增强的相对贡献,以及这些适应性变化对肌肉深处局部微血管血流动力学的影响。

方法

作者使用全肌肉微丝铸型研究了IST组(每天6次跑步;每次2.5分钟;速度60米/分钟;坡度15%;每次跑步间休息4.5分钟;每周训练5天;共10周)和久坐(SED)对照组大鼠腓肠肌白肌/混合纤维部分的小动脉适应性变化。然后利用尺寸和拓扑数据构建了一系列计算血流动力学网络模型,这些模型纳入了生理红细胞分布以及血细胞比容和直径依赖性表观粘度。

结果

与SED对照组相比,IST使3A至6A代小动脉数量显著增加。预测的IST组和SED组通过2A代的血流量与先前研究中的体内测量结果密切相符,说明了模型的准确性。IST使网络上的大部分压降从3A代转移到4A代和5A代,当施加80 mmHg驱动压力时,血流能力从SED组的0.7 mL/分钟增加到IST组的1.5 mL/分钟。

结论

对IST的主要适应性变化是3A至6A代小动脉数量增加,这反过来使血流能力增加约一倍,并使高压更深入地渗透到小动脉网络中。

相似文献

2
Exercise training produces nonuniform increases in arteriolar density of rat soleus and gastrocnemius muscle.
Microcirculation. 2006 Apr-May;13(3):175-86. doi: 10.1080/10739680600556829.
3
Interval sprint training enhances endothelial function and eNOS content in some arteries that perfuse white gastrocnemius muscle.
J Appl Physiol (1985). 2004 Jan;96(1):233-44. doi: 10.1152/japplphysiol.00105.2003. Epub 2003 Aug 15.
5
Nonuniform effects of endurance exercise training on vasodilation in rat skeletal muscle.
J Appl Physiol (1985). 2005 Feb;98(2):753-61. doi: 10.1152/japplphysiol.01263.2003. Epub 2004 Sep 24.
8
Effects of aging and exercise training on skeletal muscle blood flow and resistance artery morphology.
J Appl Physiol (1985). 2012 Dec 1;113(11):1699-708. doi: 10.1152/japplphysiol.01025.2012. Epub 2012 Oct 4.
9
Exercise-induced differential changes in gene expression among arterioles of skeletal muscles of obese rats.
J Appl Physiol (1985). 2015 Sep 15;119(6):583-603. doi: 10.1152/japplphysiol.00316.2015. Epub 2015 Jul 16.
10
The effects of high-intensity exercise on skeletal muscle neutrophil myeloperoxidase in untrained and trained rats.
Eur J Appl Physiol. 2006 Aug;97(6):716-22. doi: 10.1007/s00421-006-0193-x. Epub 2006 Jun 22.

引用本文的文献

1
Exercise and Vascular Insulin Sensitivity in the Skeletal Muscle and Brain.
Exerc Sport Sci Rev. 2019 Apr;47(2):66-74. doi: 10.1249/JES.0000000000000182.
2
Aging is associated with impaired angiogenesis, but normal microvascular network structure, in the rat mesentery.
Am J Physiol Heart Circ Physiol. 2017 Feb 1;312(2):H275-H284. doi: 10.1152/ajpheart.00200.2016. Epub 2016 Nov 18.
3
The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature.
Am J Physiol Heart Circ Physiol. 2016 Jul 1;311(1):H168-76. doi: 10.1152/ajpheart.00132.2016. Epub 2016 May 6.
4
Physical activity-induced remodeling of vasculature in skeletal muscle: role in treatment of type 2 diabetes.
J Appl Physiol (1985). 2016 Jan 1;120(1):1-16. doi: 10.1152/japplphysiol.00789.2015. Epub 2015 Oct 15.
5
Endurance, interval sprint, and resistance exercise training: impact on microvascular dysfunction in type 2 diabetes.
Am J Physiol Heart Circ Physiol. 2016 Feb 1;310(3):H337-50. doi: 10.1152/ajpheart.00440.2015. Epub 2015 Sep 25.
6
Exercise-induced differential changes in gene expression among arterioles of skeletal muscles of obese rats.
J Appl Physiol (1985). 2015 Sep 15;119(6):583-603. doi: 10.1152/japplphysiol.00316.2015. Epub 2015 Jul 16.
9
Differential vasomotor effects of insulin on gastrocnemius and soleus feed arteries in the OLETF rat model: role of endothelin-1.
Exp Physiol. 2014 Jan;99(1):262-71. doi: 10.1113/expphysiol.2013.074047. Epub 2013 Aug 30.
10
Microcirculation in skeletal muscle.
Muscles Ligaments Tendons J. 2011 Oct 30;1(1):3-11. Print 2011 Jan.

本文引用的文献

1
Exercise training produces nonuniform increases in arteriolar density of rat soleus and gastrocnemius muscle.
Microcirculation. 2006 Apr-May;13(3):175-86. doi: 10.1080/10739680600556829.
2
Arteriogenesis versus angiogenesis: similarities and differences.
J Cell Mol Med. 2006 Jan-Mar;10(1):45-55. doi: 10.1111/j.1582-4934.2006.tb00290.x.
3
Interval sprint training enhances endothelial function and eNOS content in some arteries that perfuse white gastrocnemius muscle.
J Appl Physiol (1985). 2004 Jan;96(1):233-44. doi: 10.1152/japplphysiol.00105.2003. Epub 2003 Aug 15.
5
Structural adaptation of vascular networks: role of the pressure response.
Hypertension. 2001 Dec 1;38(6):1476-9. doi: 10.1161/hy1201.100592.
6
Arteriolar remodeling in skeletal muscle of rats exposed to chronic hypoxia.
J Vasc Res. 1998 Jul-Aug;35(4):238-44. doi: 10.1159/000025589.
7
Regional changes in capillary supply in skeletal muscle of high-intensity endurance-trained rats.
J Appl Physiol (1985). 1996 Aug;81(2):619-26. doi: 10.1152/jappl.1996.81.2.619.
9
Chronic alpha 1-adrenergic blockade stimulates terminal and arcade arteriolar development.
Am J Physiol. 1996 Aug;271(2 Pt 2):H752-9. doi: 10.1152/ajpheart.1996.271.2.H752.
10
A circumferential stress-growth rule predicts arcade arteriole formation in a network model.
Microcirculation. 1995 May;2(1):41-51. doi: 10.3109/10739689509146758.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验