Suppr超能文献

神经元型一氧化氮合酶(NOS-I)基因敲除可独立于脑源性神经营养因子(BDNF)提高海马神经细胞的存活率。

Neuronal nitric oxide synthase (NOS-I) knockout increases the survival rate of neural cells in the hippocampus independently of BDNF.

作者信息

Fritzen Sabrina, Schmitt Angelika, Köth Katharina, Sommer Claudia, Lesch Klaus-Peter, Reif Andreas

机构信息

Molecular and Clinical Psychobiology, Department of Psychiatry and Psychotherapy Josef-Schneider-Str. 11, Julius-Maximilians-University Würzburg, Füchsleinstr. 15, D-97080 Würzburg, Germany.

出版信息

Mol Cell Neurosci. 2007 Jun;35(2):261-71. doi: 10.1016/j.mcn.2007.02.021. Epub 2007 Mar 13.

Abstract

Investigations regarding the regulation of adult neurogenesis, i.e., the generation of new neurons from progenitor cells, have revealed a high degree of complexity. Although the pleiotropic messenger molecule nitric oxide (NO) has been suggested to modulate adult neurogenesis, the evidence is inconclusive due to the presence of different NO synthase isoforms in the brain. We therefore investigated whether stem cell proliferation or survival is altered in mice lacking neuronal nitric oxide synthase (NOS-I) or both endothelial and neuronal NOS (NOS-I/-III double knockout). While proliferation of neural stem cells was only numerically, but not significantly increased in NOS-I knockdown animals, the survival of newly formed neurons was substantially higher in NOS-I-deficient mice. In contrast, NOS-I/-III double knockout had significantly decreased survival rates. QRT-PCR in NOS-I-deficient mice revealed neither NOS-III upregulation compensating for the loss of NOS-I, nor alterations in VEGF levels as found in NOS-III-deficient animals. As changes in BDNF expression or protein levels were observed in the cortex, cerebellum and striatum, but not the hippocampus, the increase in stem cell survival appears not to be due to a BDNF mediated mechanism. Finally, NOS-I containing neurons in the dentate gyrus are rare and not localized close to progenitor cells, rendering direct NO effects on these cells unlikely. In conclusion, we suggest that NO predominantly inhibits the survival of new-born cells, by an indirect mechanism not involving BDNF or VEGF. Together, these results emphasize the important role of the different NOS isoforms with respect to adult neurogenesis.

摘要

关于成体神经发生(即由祖细胞生成新神经元)调控的研究揭示了其高度的复杂性。尽管多效性信使分子一氧化氮(NO)被认为可调节成体神经发生,但由于大脑中存在不同的一氧化氮合酶同工型,证据并不确凿。因此,我们研究了缺乏神经元型一氧化氮合酶(NOS-I)或同时缺乏内皮型和神经元型一氧化氮合酶(NOS-I/-III双敲除)的小鼠中干细胞增殖或存活是否发生改变。虽然在NOS-I基因敲低的动物中神经干细胞的增殖仅在数值上有所增加,但并不显著,而在缺乏NOS-I的小鼠中,新形成神经元的存活率显著更高。相比之下,NOS-I/-III双敲除小鼠的存活率则显著降低。对缺乏NOS-I的小鼠进行定量逆转录聚合酶链反应(QRT-PCR)分析发现,既没有NOS-III上调来补偿NOS-I的缺失,也没有像在缺乏NOS-III的动物中那样出现血管内皮生长因子(VEGF)水平的改变。由于在皮质、小脑和纹状体中观察到脑源性神经营养因子(BDNF)表达或蛋白水平的变化,而在海马体中未观察到,干细胞存活率的增加似乎并非由BDNF介导的机制所致。最后,齿状回中含有NOS-I的神经元很少,且并不靠近祖细胞,因此NO对这些细胞的直接作用不太可能。总之,我们认为NO主要通过一种不涉及BDNF或VEGF的间接机制抑制新生细胞的存活。这些结果共同强调了不同NOS同工型在成体神经发生方面的重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验