Suppr超能文献

由针对有限抗原类型集的宿主免疫反应网络引发的流感爆发。

The generation of influenza outbreaks by a network of host immune responses against a limited set of antigenic types.

作者信息

Recker Mario, Pybus Oliver G, Nee Sean, Gupta Sunetra

机构信息

Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2007 May 1;104(18):7711-6. doi: 10.1073/pnas.0702154104. Epub 2007 Apr 25.

Abstract

It is commonly believed that influenza epidemics arise through the incremental accumulation of viral mutations, culminating in a novel antigenic type that is able to escape host immunity. Successive epidemic strains therefore become increasingly antigenically distant from a founding strain. Here, we present an alternative explanation where, because of functional constraints on the defining epitopes, the virus population is characterized by a limited set of antigenic types, all of which may be continuously generated by mutation from preexisting strains and other processes. Under these circumstances, influenza outbreaks arise as a consequence of host immune selection in a manner that is independent of the mode and tempo of viral mutation. By contrast with existing paradigms, antigenic distance between epidemic strains does not necessarily accumulate with time in our model, and it is the changing profile of host population immunity that creates the conditions for the emergence of the next influenza strain rather than the mutational capabilities of the virus.

摘要

人们普遍认为,流感流行是通过病毒突变的逐步积累而产生的,最终形成一种能够逃避宿主免疫的新型抗原类型。因此, successive epidemic strains与原始毒株在抗原性上的差异越来越大。在这里,我们提出一种不同的解释,由于定义表位的功能限制,病毒群体具有一组有限的抗原类型,所有这些类型都可能通过现有毒株的突变和其他过程不断产生。在这种情况下,流感爆发是宿主免疫选择的结果,其方式与病毒突变的模式和速度无关。与现有范式不同,在我们的模型中,流行毒株之间的抗原距离不一定随时间积累,是宿主群体免疫状况的变化为下一种流感毒株的出现创造了条件,而不是病毒的突变能力。 (注:原文中“successive epidemic strains”未翻译完整,这里推测可能是“连续的流行毒株”之类的意思,具体需结合完整语境进一步确定准确含义。)

相似文献

1
The generation of influenza outbreaks by a network of host immune responses against a limited set of antigenic types.
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7711-6. doi: 10.1073/pnas.0702154104. Epub 2007 Apr 25.
2
Influenza vaccine--outmaneuvering antigenic shift and drift.
N Engl J Med. 2004 Jan 15;350(3):218-20. doi: 10.1056/NEJMp038238.
3
Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control.
Vaccine. 2002 Aug 19;20(25-26):3068-87. doi: 10.1016/s0264-410x(02)00254-2.
4
5
Antigenic evolution of viruses in host populations.
PLoS Pathog. 2018 Sep 12;14(9):e1007291. doi: 10.1371/journal.ppat.1007291. eCollection 2018 Sep.
6
A cross-immunization model for the extinction of old influenza strains.
Sci Rep. 2016 May 13;6:25907. doi: 10.1038/srep25907.
8
Epidemic dynamics and antigenic evolution in a single season of influenza A.
Proc Biol Sci. 2006 Jun 7;273(1592):1307-16. doi: 10.1098/rspb.2006.3466.
9
Co-circulation of influenza A virus strains and emergence of pandemic via reassortment: the role of cross-immunity.
Epidemics. 2013 Mar;5(1):20-33. doi: 10.1016/j.epidem.2012.10.003. Epub 2012 Nov 6.
10
Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans.
Science. 2006 Dec 22;314(5807):1898-903. doi: 10.1126/science.1132745.

引用本文的文献

1
A speed limit on serial strain replacement from original antigenic sin.
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2400202121. doi: 10.1073/pnas.2400202121. Epub 2024 Jun 10.
2
Darwin review: the evolution of virulence in human pathogens.
Proc Biol Sci. 2024 Feb 14;291(2016):20232043. doi: 10.1098/rspb.2023.2043. Epub 2024 Feb 7.
3
A speed limit on serial strain replacement from original antigenic sin.
bioRxiv. 2024 Apr 20:2024.01.04.574172. doi: 10.1101/2024.01.04.574172.
4
Deciphering the rule of antigen-antibody amino acid interaction.
Front Immunol. 2023 Dec 4;14:1269916. doi: 10.3389/fimmu.2023.1269916. eCollection 2023.
5
Competition of SARS-CoV-2 variants on the pandemic transmission dynamics.
Chaos Solitons Fractals. 2023 Apr;169:113193. doi: 10.1016/j.chaos.2023.113193. Epub 2023 Feb 10.
6
Ecological and evolutionary dynamics of multi-strain RNA viruses.
Nat Ecol Evol. 2022 Oct;6(10):1414-1422. doi: 10.1038/s41559-022-01860-6. Epub 2022 Sep 22.
7
Evolutionary features of a prolific subtype of avian influenza A virus in European waterfowl.
Virus Evol. 2022 Aug 27;8(2):veac074. doi: 10.1093/ve/veac074. eCollection 2022.
8
Host and geographic barriers shape the competition, coexistence, and extinction patterns of influenza A (H1N1) viruses.
Ecol Evol. 2022 Mar 21;12(3):e8732. doi: 10.1002/ece3.8732. eCollection 2022 Mar.
9
Influenza immune escape under heterogeneous host immune histories.
Trends Microbiol. 2021 Dec;29(12):1072-1082. doi: 10.1016/j.tim.2021.05.009. Epub 2021 Jul 1.
10
An Antigenic Thrift-Based Approach to Influenza Vaccine Design.
Vaccines (Basel). 2021 Jun 16;9(6):657. doi: 10.3390/vaccines9060657.

本文引用的文献

1
Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans.
Science. 2006 Dec 22;314(5807):1898-903. doi: 10.1126/science.1132745.
2
Low frequency of poultry-to-human H5NI virus transmission, southern Cambodia, 2005.
Emerg Infect Dis. 2006 Oct;12(10):1542-7. doi: 10.3201/eid1210.060424.
3
Cross-protective immunity in mice induced by live-attenuated or inactivated vaccines against highly pathogenic influenza A (H5N1) viruses.
Vaccine. 2006 Nov 10;24(44-46):6588-93. doi: 10.1016/j.vaccine.2006.05.039. Epub 2006 Jun 5.
5
Evaluation of hemagglutinin subtype 1 swine influenza viruses from the United States.
Vet Microbiol. 2006 Dec 20;118(3-4):212-22. doi: 10.1016/j.vetmic.2006.07.017. Epub 2006 Aug 1.
6
Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2845-50. doi: 10.1073/pnas.0511120103. Epub 2006 Feb 10.
7
Modelling antigenic drift in weekly flu incidence.
Stat Med. 2005 Nov 30;24(22):3447-61. doi: 10.1002/sim.2196.
9
Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein.
Vaccine. 2005 Nov 16;23(46-47):5404-10. doi: 10.1016/j.vaccine.2005.04.047. Epub 2005 Jun 13.
10
Mapping the antigenic and genetic evolution of influenza virus.
Science. 2004 Jul 16;305(5682):371-6. doi: 10.1126/science.1097211. Epub 2004 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验