Morita Hiroyuki, Kondo Shin, Oguro Satoshi, Noguchi Hiroshi, Sugio Shigetoshi, Abe Ikuro, Kohno Toshiyuki
Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
Chem Biol. 2007 Apr;14(4):359-69. doi: 10.1016/j.chembiol.2007.02.003.
The crystal structures of a wild-type and a mutant PCS, a novel plant type III polyketide synthase from a medicinal plant, Aloe arborescens, were solved at 1.6 A resolution. The crystal structures revealed that the pentaketide-producing wild-type and the octaketide-producing M207G mutant shared almost the same overall folding, and that the large-to-small substitution dramatically increases the volume of the polyketide-elongation tunnel by opening a gate to two hidden pockets behind the active site of the enzyme. The chemically inert active site residue 207 thus controls the number of condensations of malonyl-CoA, solely depending on the steric bulk of the side chain. These findings not only provided insight into the polyketide formation reaction, but they also suggested strategies for the engineered biosynthesis of polyketides.
从药用植物木立芦荟中分离出一种新型植物III型聚酮合酶(PCS),解析了其野生型和突变体的晶体结构,分辨率为1.6埃。晶体结构显示,产生五酮化合物的野生型和产生八酮化合物的M207G突变体具有几乎相同的整体折叠结构,并且这种由大到小的取代通过打开酶活性位点后方两个隐藏口袋的通道,极大地增加了聚酮延伸隧道的体积。因此,化学惰性的活性位点残基207仅取决于侧链的空间大小,控制着丙二酰辅酶A的缩合次数。这些发现不仅为聚酮化合物形成反应提供了深入见解,还为聚酮化合物的工程生物合成提出了策略。