Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan.
J Biol Chem. 2019 Oct 11;294(41):15121-15136. doi: 10.1074/jbc.REV119.006129. Epub 2019 Aug 30.
Type III polyketide synthases (PKSs) produce an incredibly diverse group of plant specialized metabolites with medical importance despite their structural simplicity compared with the modular type I and II PKS systems. The type III PKSs use homodimeric proteins to construct the molecular scaffolds of plant polyketides by iterative condensations of starter and extender CoA thioesters. Ever since the structure of chalcone synthase (CHS) was disclosed in 1999, crystallographic and mutational studies of the type III PKSs have explored the intimate structural features of these enzyme reactions, revealing that seemingly minor alterations in the active site can drastically change the catalytic functions and product profiles. New structures described in this review further build on this knowledge, elucidating the detailed catalytic mechanism of enzymes that make curcuminoids, use extender substrates without the canonical CoA activator, and use noncanonical starter substrates, among others. These insights have been critical in identifying structural features that can serve as a platform for enzyme engineering via structure-guided and precursor-directed engineered biosynthesis of plant polyketides. In addition, we describe the unique properties of the recently discovered "second-generation" type III PKSs that catalyzes the one-pot formation of complex molecular scaffolds from three distinct CoA thioesters or from "CoA-free" substrates, which are also providing exciting new opportunities for synthetic biology approaches. Finally, we consider post-type III PKS tailoring enzymes, which can also serve as useful tools for combinatorial biosynthesis of further unnatural novel molecules. Recent progress in the field has led to an exciting time of understanding and manipulating these fascinating enzymes.
III 型聚酮合酶 (PKS) 产生了一组令人难以置信的具有医学重要性的植物特异性代谢物,尽管与模块化的 I 型和 II 型 PKS 系统相比,它们的结构非常简单。III 型 PKS 使用同源二聚体蛋白通过重复缩合起始和延伸 CoA 硫酯来构建植物聚酮的分子支架。自 1999 年查尔酮合酶 (CHS) 的结构被揭示以来,III 型 PKS 的晶体学和突变研究已经探索了这些酶反应的密切结构特征,表明活性位点的微小改变可以极大地改变催化功能和产物谱。本综述中描述的新结构进一步建立在这些知识的基础上,阐明了产生姜黄素类化合物的酶、使用没有典型 CoA 激活剂的延伸底物以及使用非典型起始底物的酶的详细催化机制等。这些见解对于确定可以作为通过结构指导和前体定向工程生物合成植物聚酮酶工程的平台的结构特征至关重要。此外,我们描述了最近发现的“第二代”III 型 PKS 的独特性质,该酶可以从三个不同的 CoA 硫酯或“无 CoA”底物一锅形成复杂的分子支架,这也为合成生物学方法提供了令人兴奋的新机会。最后,我们考虑了 PKS 后修饰酶,它们也可以作为组合生物合成进一步非天然新型分子的有用工具。该领域的最新进展带来了一个令人兴奋的理解和操纵这些迷人酶的时代。