Suppr超能文献

一种识别50至64岁绝经后女性骨质疏松性骨折短期风险增加的方法。

An approach for identifying postmenopausal women age 50-64 years at increased short-term risk for osteoporotic fracture.

作者信息

Chen Y-T, Miller P D, Barrett-Connor E, Weiss T W, Sajjan S G, Siris E S

机构信息

Department of Outcomes Research and Management, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA.

出版信息

Osteoporos Int. 2007 Sep;18(9):1287-96. doi: 10.1007/s00198-007-0380-6. Epub 2007 Apr 27.

Abstract

UNLABELLED

Using data from NORA, we used 18 potential risk factors in a classification and regression tree analysis to build two algorithms. These algorithms correctly identified postmenopausal women between the ages of 50 and 64 years who were at the highest risk of osteoporotic fracture within 36 months.

INTRODUCTION

The objective was to develop algorithms that best predict short-term fracture risk (3 years) in postmenopausal women 50-64 years old.

METHODS

Data were from 91,652 women who responded to follow-up surveys as part of National Osteoporosis Risk Assessment (NORA) study. Peripheral bone mineral density (BMD) and risk factors obtained at baseline; incident osteoporotic fractures obtained from follow-up surveys. Eighteen risk factors were entered into a classification and regression tree analysis to build two algorithms, one with and one without BMD.

RESULTS

Two thousand and seven (2.2%) women reported new osteoporotic fractures. Prior fracture, a peripheral BMD T-score <or= -1.1, and self-reported fair/poor health status were the most important determinants for short-term fracture and were associated, respectively, with 7.2%, 3.1%, and 2.4% fracture risk within 3 years. This algorithm with three risk factors correctly classified 65% of the women who experienced an incident fracture and 59% of the women who did not experience an incident fracture. Without BMD T-score, the most important determinants for fracture prediction were previous fracture, self-reported fair/poor health status, and no current use of postmenopausal hormone therapy.

CONCLUSIONS

NORA-based algorithms may be useful for health care providers to guide further assessment and management decisions to prevent fractures in younger postmenopausal women.

摘要

未标注

利用来自国家骨质疏松症风险评估(NORA)的数据,我们在分类回归树分析中使用了18个潜在风险因素来构建两种算法。这些算法正确识别出了年龄在50至64岁之间、在36个月内发生骨质疏松性骨折风险最高的绝经后女性。

引言

目的是开发能最佳预测50 - 64岁绝经后女性短期骨折风险(3年)的算法。

方法

数据来自91652名参与随访调查的女性,这些调查是国家骨质疏松症风险评估(NORA)研究的一部分。在基线时获取外周骨密度(BMD)和风险因素;从随访调查中获取骨质疏松性骨折事件。将18个风险因素纳入分类回归树分析以构建两种算法,一种包含BMD,一种不包含BMD。

结果

2007名(2.2%)女性报告发生了新的骨质疏松性骨折。既往骨折、外周BMD T值≤ -1.1以及自我报告的健康状况为一般/较差是短期骨折的最重要决定因素,在3年内发生骨折的风险分别为7.2%、3.1%和2.4%。这种包含三个风险因素的算法正确分类了65%发生骨折事件的女性和59%未发生骨折事件的女性。在不考虑BMD T值的情况下,骨折预测的最重要决定因素是既往骨折、自我报告的健康状况为一般/较差以及当前未使用绝经后激素治疗。

结论

基于NORA的算法可能有助于医疗保健提供者指导进一步的评估和管理决策,以预防年轻绝经后女性发生骨折。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验