Katajamaa Mikko, Oresic Matej
Turku Centre for Biotechnology, Tykistökatu 6, FIN-20521 Turku, Finland.
J Chromatogr A. 2007 Jul 27;1158(1-2):318-28. doi: 10.1016/j.chroma.2007.04.021. Epub 2007 Apr 19.
Modern analytical technologies afford comprehensive and quantitative investigation of a multitude of different metabolites. Typical metabolomic experiments can therefore produce large amounts of data. Handling such complex datasets is an important step that has big impact on extent and quality at which the metabolite identification and quantification can be made, and thus on the ultimate biological interpretation of results. Increasing interest in metabolomics thus led to resurgence of interest in related data processing. A wide variety of methods and software tools have been developed for metabolomics during recent years, and this trend is likely to continue. In this paper we overview the key steps of metabolomic data processing and focus on reviewing recent literature related to this topic, particularly on methods for handling data from liquid chromatography mass spectrometry (LC-MS) experiments.
现代分析技术能够对多种不同的代谢物进行全面和定量的研究。因此,典型的代谢组学实验会产生大量数据。处理如此复杂的数据集是一个重要步骤,它对代谢物鉴定和定量的范围及质量有重大影响,进而对结果的最终生物学解释产生影响。因此,对代谢组学兴趣的增加导致了对相关数据处理兴趣的复苏。近年来已开发出各种各样用于代谢组学的方法和软件工具,而且这种趋势可能会持续下去。在本文中,我们概述了代谢组学数据处理的关键步骤,并着重回顾与该主题相关的近期文献,特别是处理液相色谱质谱(LC-MS)实验数据的方法。