School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
J Sep Sci. 2010 Feb;33(3):290-304. doi: 10.1002/jssc.200900609.
While metabolomics attempts to comprehensively analyse the small molecules characterising a biological system, MS has been promoted as the gold standard to study the wide chemical diversity and range of concentrations of the metabolome. On the other hand, extracting the relevant information from the overwhelming amount of data generated by modern analytical platforms has become an important issue for knowledge discovery in this research field. The appropriate treatment of such data is therefore of crucial importance in order, for the data, to provide valuable information. The aim of this review is to provide a broad overview of the methodologies developed to handle and process MS metabolomic data, compare the samples and highlight the relevant metabolites, starting from the raw data to the biomarker discovery. As data handling can be further separated into data processing, data pre-treatment and data analysis, recent advances in each of these steps are detailed separately.
虽然代谢组学试图全面分析生物系统特征的小分子,但 MS 已被推广为研究代谢组广泛的化学多样性和浓度范围的金标准。另一方面,从现代分析平台产生的大量数据中提取相关信息已成为该研究领域知识发现的一个重要问题。因此,为了使数据提供有价值的信息,对这些数据进行适当的处理是至关重要的。本文综述的目的是提供一个广泛的概述,以处理和处理 MS 代谢组学数据的方法,比较样品和突出相关代谢物,从原始数据到生物标志物的发现。由于数据处理可以进一步分为数据处理、数据预处理和数据分析,因此详细介绍了这些步骤中的每一个步骤的最新进展。