Han Jun, Datla Raju, Chan Sammy, Borchers Christoph H
University of Victoria - Genome BC Proteomics Centre, Victoria, BC, Canada.
Bioanalysis. 2009 Dec;1(9):1665-84. doi: 10.4155/bio.09.158.
The metabolome is composed of a vast number of small-molecule metabolites that exhibit a diversity of physical and chemical properties and exist over a wide dynamic range in biological samples. Multiple analytical techniques, used in a complementary manner, are required to achieve high coverage of the metabolome. MS is playing a central role in metabolomics research. Herein, we present a brief overview of the MS-based technologies employed for high-throughput metabolomics. These technologies range from chromatography-MS techniques, such as GC-MS and LC-MS, to chromatography-free techniques, such as direct infusion, matrix-assisted and matrix-free laser desorption/ionization, imaging and some new ambient ionization approaches. Chemoinformatics and bioinformatics tools are widely available to facilitate successful metabolomics studies by turning the complex metabolomics data into biological information through streamlined data processing, analysis and interpretation.
代谢组由大量小分子代谢物组成,这些代谢物具有多样的物理和化学性质,并且在生物样品中存在于广泛的动态范围内。需要多种以互补方式使用的分析技术来实现代谢组的高覆盖率。质谱在代谢组学研究中发挥着核心作用。在此,我们简要概述用于高通量代谢组学的基于质谱的技术。这些技术范围从色谱 - 质谱技术,如气相色谱 - 质谱(GC - MS)和液相色谱 - 质谱(LC - MS),到无需色谱的技术,如直接进样、基质辅助和无基质激光解吸/电离、成像以及一些新的常压电离方法。化学信息学和生物信息学工具广泛可用,通过简化的数据处理、分析和解释将复杂的代谢组学数据转化为生物信息,从而促进成功的代谢组学研究。