Suppr超能文献

酿酒酵母中翻译终止效率的微调涉及两个与核糖体出口通道紧密相邻的因子。

Fine-tuning of translation termination efficiency in Saccharomyces cerevisiae involves two factors in close proximity to the exit tunnel of the ribosome.

作者信息

Hatin Isabelle, Fabret Céline, Namy Olivier, Decatur Wayne A, Rousset Jean-Pierre

机构信息

IGM, Université Paris-Sud, UMR 8621, F91405 Orsay, France.

出版信息

Genetics. 2007 Nov;177(3):1527-37. doi: 10.1534/genetics.107.070771. Epub 2007 May 4.

Abstract

In eukaryotes, release factors 1 and 3 (eRF1 and eRF3) are recruited to promote translation termination when a stop codon on the mRNA enters at the ribosomal A-site. However, their overexpression increases termination efficiency only moderately, suggesting that other factors might be involved in the termination process. To determine such unknown components, we performed a genetic screen in Saccharomyces cerevisiae that identified genes increasing termination efficiency when overexpressed. For this purpose, we constructed a dedicated reporter strain in which a leaky stop codon is inserted into the chromosomal copy of the ade2 gene. Twenty-five antisuppressor candidates were identified and characterized for their impact on readthrough. Among them, SSB1 and snR18, two factors close to the exit tunnel of the ribosome, directed the strongest antisuppression effects when overexpressed, showing that they may be involved in fine-tuning of the translation termination level.

摘要

在真核生物中,当mRNA上的终止密码子进入核糖体A位点时,释放因子1和3(eRF1和eRF3)会被招募来促进翻译终止。然而,它们的过表达仅适度提高终止效率,这表明其他因素可能参与了终止过程。为了确定这些未知成分,我们在酿酒酵母中进行了遗传筛选,鉴定出了过表达时能提高终止效率的基因。为此,我们构建了一个专门的报告菌株,其中在ade2基因的染色体拷贝中插入了一个渗漏性终止密码子。鉴定出了25个反抑制候选基因,并对它们对通读的影响进行了表征。其中,SSB1和snR18这两个靠近核糖体出口通道的因子,过表达时表现出最强的反抑制作用,表明它们可能参与了翻译终止水平的微调。

相似文献

2
Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae.
Mol Cell Biol. 2014 Nov;34(21):4062-76. doi: 10.1128/MCB.00799-14. Epub 2014 Aug 25.
3
Ribosome-bound Pub1 modulates stop codon decoding during translation termination in yeast.
FEBS J. 2017 Jun;284(12):1914-1930. doi: 10.1111/febs.14099. Epub 2017 May 29.
5
Transcriptome-wide investigation of stop codon readthrough in Saccharomyces cerevisiae.
PLoS Genet. 2021 Apr 20;17(4):e1009538. doi: 10.1371/journal.pgen.1009538. eCollection 2021 Apr.
6
The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae.
Mol Cell Biol. 2004 Oct;24(20):9186-97. doi: 10.1128/MCB.24.20.9186-9197.2004.
7
GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination.
Mol Cell Biol. 2004 Sep;24(17):7769-78. doi: 10.1128/MCB.24.17.7769-7778.2004.
10
Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay.
Science. 2010 Oct 15;330(6002):369-72. doi: 10.1126/science.1192430.

引用本文的文献

1
A dual role of the ribosome-bound chaperones RAC/Ssb in maintaining the fidelity of translation termination.
Nucleic Acids Res. 2019 Jul 26;47(13):7018-7034. doi: 10.1093/nar/gkz334.
2
Two chaperones locked in an embrace: structure and function of the ribosome-associated complex RAC.
Nat Struct Mol Biol. 2017 Aug 3;24(8):611-619. doi: 10.1038/nsmb.3435.
3
Profiling Ssb-Nascent Chain Interactions Reveals Principles of Hsp70-Assisted Folding.
Cell. 2017 Jul 13;170(2):298-311.e20. doi: 10.1016/j.cell.2017.06.038.
5
The Not4 RING E3 Ligase: A Relevant Player in Cotranslational Quality Control.
ISRN Mol Biol. 2013 Jan 21;2013:548359. doi: 10.1155/2013/548359. eCollection 2013.
6
Modulation of efficiency of translation termination in Saccharomyces cerevisiae.
Prion. 2014;8(3):247-60. doi: 10.4161/pri.29851. Epub 2014 Nov 1.
7
Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae.
Mol Cell Biol. 2014 Nov;34(21):4062-76. doi: 10.1128/MCB.00799-14. Epub 2014 Aug 25.
8
Modulation of stop codon read-through efficiency and its effect on the replication of murine leukemia virus.
J Virol. 2014 Sep;88(18):10364-76. doi: 10.1128/JVI.00898-14. Epub 2014 Jul 2.

本文引用的文献

2
eEF1B: At the dawn of the 21st century.
Biochim Biophys Acta. 2006 Jan-Feb;1759(1-2):13-31. doi: 10.1016/j.bbaexp.2006.02.003. Epub 2006 Mar 24.
3
Specific effects of ribosome-tethered molecular chaperones on programmed -1 ribosomal frameshifting.
Eukaryot Cell. 2006 Apr;5(4):762-70. doi: 10.1128/EC.5.4.762-770.2006.
4
Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes.
Rev Physiol Biochem Pharmacol. 2005;155:1-30. doi: 10.1007/3-540-28217-3_1.
5
Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae.
Nucleic Acids Res. 2004 Dec 15;32(22):6605-16. doi: 10.1093/nar/gkh1004. Print 2004.
6
The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae.
Mol Cell Biol. 2004 Oct;24(20):9186-97. doi: 10.1128/MCB.24.20.9186-9197.2004.
7
GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination.
Mol Cell Biol. 2004 Sep;24(17):7769-78. doi: 10.1128/MCB.24.17.7769-7778.2004.
10
The major 5' determinant in stop codon read-through involves two adjacent adenines.
Nucleic Acids Res. 2004 Jan 21;32(2):415-21. doi: 10.1093/nar/gkh201. Print 2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验