Suppr超能文献

核糖体谱分析揭示了黑腹果蝇中普遍存在且受调控的终止密码子通读现象。

Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster.

作者信息

Dunn Joshua G, Foo Catherine K, Belletier Nicolette G, Gavis Elizabeth R, Weissman Jonathan S

机构信息

California Institute of Quantitative Biosciences, San Francisco, United States.

出版信息

Elife. 2013 Dec 3;2:e01179. doi: 10.7554/eLife.01179.

Abstract

Ribosomes can read through stop codons in a regulated manner, elongating rather than terminating the nascent peptide. Stop codon readthrough is essential to diverse viruses, and phylogenetically predicted to occur in a few hundred genes in Drosophila melanogaster, but the importance of regulated readthrough in eukaryotes remains largely unexplored. Here, we present a ribosome profiling assay (deep sequencing of ribosome-protected mRNA fragments) for Drosophila melanogaster, and provide the first genome-wide experimental analysis of readthrough. Readthrough is far more pervasive than expected: the vast majority of readthrough events evolved within D. melanogaster and were not predicted phylogenetically. The resulting C-terminal protein extensions show evidence of selection, contain functional subcellular localization signals, and their readthrough is regulated, arguing for their importance. We further demonstrate that readthrough occurs in yeast and humans. Readthrough thus provides general mechanisms both to regulate gene expression and function, and to add plasticity to the proteome during evolution. DOI: http://dx.doi.org/10.7554/eLife.01179.001.

摘要

核糖体能够以一种受调控的方式通读终止密码子,使新生肽链得以延伸而非终止。终止密码子通读对多种病毒至关重要,并且从系统发育角度预测在黑腹果蝇的数百个基因中会发生,但在真核生物中受调控的通读的重要性在很大程度上仍未得到探索。在此,我们展示了一种针对黑腹果蝇的核糖体分析方法(对核糖体保护的mRNA片段进行深度测序),并提供了首次全基因组范围的通读实验分析。通读比预期更为普遍:绝大多数通读事件是在黑腹果蝇内部进化而来的,在系统发育上并未被预测到。由此产生的C末端蛋白质延伸显示出选择的证据,包含功能性亚细胞定位信号,并且其通读是受调控的,这表明它们很重要。我们进一步证明通读在酵母和人类中也会发生。因此,通读提供了调控基因表达和功能的一般机制,以及在进化过程中为蛋白质组增加可塑性的机制。DOI: http://dx.doi.org/10.7554/eLife.01179.001

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c2f/3840789/69e3c3189624/elife01179f001.jpg

相似文献

3
Transcriptome-wide investigation of stop codon readthrough in Saccharomyces cerevisiae.
PLoS Genet. 2021 Apr 20;17(4):e1009538. doi: 10.1371/journal.pgen.1009538. eCollection 2021 Apr.
4
Evolutionary Dynamics of Abundant Stop Codon Readthrough.
Mol Biol Evol. 2016 Dec;33(12):3108-3132. doi: 10.1093/molbev/msw189. Epub 2016 Sep 7.
5
Identification and functional characterization of mRNAs that exhibit stop codon readthrough in Arabidopsis thaliana.
J Biol Chem. 2022 Aug;298(8):102173. doi: 10.1016/j.jbc.2022.102173. Epub 2022 Jun 22.
7
Computational analysis of stop codon readthrough in D.melanogaster.
Bioinformatics. 2003 Jul 22;19(11):1371-80. doi: 10.1093/bioinformatics/btg183.
8
Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae.
Nucleic Acids Res. 2004 Dec 15;32(22):6605-16. doi: 10.1093/nar/gkh1004. Print 2004.
9
Evidence of abundant stop codon readthrough in Drosophila and other metazoa.
Genome Res. 2011 Dec;21(12):2096-113. doi: 10.1101/gr.119974.110. Epub 2011 Oct 12.
10
Global analysis of translation termination in E. coli.
PLoS Genet. 2017 Mar 16;13(3):e1006676. doi: 10.1371/journal.pgen.1006676. eCollection 2017 Mar.

引用本文的文献

3
Defining the high-translational readthrough stop codon context.
PLoS Genet. 2025 Jun 25;21(6):e1011753. doi: 10.1371/journal.pgen.1011753. eCollection 2025 Jun.
4
Landscape and regulation of mRNA translation in the early C. elegans embryo.
Cell Rep. 2025 May 30;44(6):115778. doi: 10.1016/j.celrep.2025.115778.
6
Translational activity of 80S monosomes varies dramatically across different tissues.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf292.
7
Constraints on the optimization of gene product diversity.
Mol Syst Biol. 2025 May;21(5):472-491. doi: 10.1038/s44320-025-00095-4. Epub 2025 Apr 10.
8
Translational error in mice increases with ageing in an organ-dependent manner.
Nat Commun. 2025 Feb 28;16(1):2069. doi: 10.1038/s41467-025-57203-z.
9
Principles, challenges, and advances in ribosome profiling: from bulk to low-input and single-cell analysis.
Adv Biotechnol (Singap). 2023 Dec 1;1(4):6. doi: 10.1007/s44307-023-00006-4.
10
Landscape and regulation of mRNA translation in the early embryo.
bioRxiv. 2025 Apr 1:2024.12.13.628416. doi: 10.1101/2024.12.13.628416.

本文引用的文献

1
Reinitiation and other unconventional posttermination events during eukaryotic translation.
Mol Cell. 2013 Jul 25;51(2):249-64. doi: 10.1016/j.molcel.2013.05.026. Epub 2013 Jun 27.
2
Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins.
Cell. 2013 Jul 3;154(1):240-51. doi: 10.1016/j.cell.2013.06.009. Epub 2013 Jun 27.
3
Identifying RNA editing sites using RNA sequencing data alone.
Nat Methods. 2013 Feb;10(2):128-32. doi: 10.1038/nmeth.2330. Epub 2013 Jan 6.
4
Ensembl 2013.
Nucleic Acids Res. 2013 Jan;41(Database issue):D48-55. doi: 10.1093/nar/gks1236. Epub 2012 Nov 30.
5
Decoding human cytomegalovirus.
Science. 2012 Nov 23;338(6110):1088-93. doi: 10.1126/science.1227919.
6
FlyBase: improvements to the bibliography.
Nucleic Acids Res. 2013 Jan;41(Database issue):D751-7. doi: 10.1093/nar/gks1024. Epub 2012 Nov 3.
7
Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting.
Genome Res. 2012 Nov;22(11):2208-18. doi: 10.1101/gr.139568.112. Epub 2012 Aug 9.
8
Large ribosomal protein 4 increases efficiency of viral recoding sequences.
J Virol. 2012 Sep;86(17):8949-58. doi: 10.1128/JVI.01053-12. Epub 2012 Jun 20.
9
Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi.
Nature. 2012 May 23;485(7399):522-5. doi: 10.1038/nature11051.
10
Observation of dually decoded regions of the human genome using ribosome profiling data.
Genome Res. 2012 Nov;22(11):2219-29. doi: 10.1101/gr.133249.111. Epub 2012 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验