Suppr超能文献

通过似然交叉验证进行因子分析模型评估。

Factor analysis model evaluation through likelihood cross-validation.

作者信息

Knafl George J, Grey Margaret

机构信息

School of Nursing, Oregon Health and Science University, 3455 SW US Veterans Hospital Road, Portland, OR 97239, USA.

出版信息

Stat Methods Med Res. 2007 Apr;16(2):77-102. doi: 10.1177/0962280206070649.

Abstract

Medical research studies utilize survey instruments consisting of responses to multiple items combined into one or more scales. These studies can benefit from methods for evaluating those scales. Such an approach is presented for evaluating exploratory and confirmatory factor analysis models with decisions about covariance structure, including the number of factors, the factor extraction procedure, the allocation of survey items to summated scales and the extent of inter-scale dependence, made objectively using a likelihood-based form of cross-validation. This approach is demonstrated through example analyses using baseline data for three survey instruments from a clinical trial involving adolescents with type 1 diabetes.

摘要

医学研究利用由对多个项目的回答组成的调查工具,这些回答被组合成一个或多个量表。这些研究可以从评估这些量表的方法中受益。本文提出了一种方法,用于评估探索性和验证性因素分析模型,并对协方差结构做出决策,包括因素数量、因素提取程序、将调查项目分配到总和量表以及量表间依赖程度,使用基于似然的交叉验证形式客观地做出这些决策。通过使用一项涉及1型糖尿病青少年的临床试验中三种调查工具的基线数据进行示例分析,展示了这种方法。

相似文献

2
Scale development based on likelihood cross-validation.基于似然交叉验证的量表开发。
Stat Methods Med Res. 2012 Dec;21(6):599-619. doi: 10.1177/0962280210391444. Epub 2010 Dec 9.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验