Verma Abhinav, Gopal Srinivasa M, Oh Jung S, Lee Kyu H, Wenzel Wolfgang
Institute for Scientific Computing, Forschungszentrum Karlsruhe, Karlsruhe, Germany.
J Comput Chem. 2007 Dec;28(16):2552-8. doi: 10.1002/jcc.20750.
The search for efficient and predictive methods to describe the protein folding process at the all-atom level remains an important grand-computational challenge. The development of multi-teraflop architectures, such as the IBM BlueGene used in this study, has been motivated in part by the large computational requirements of such studies. Here we report the predictive all-atom folding of the forty-amino acid HIV accessory protein using an evolutionary stochastic optimization technique. We implemented the optimization method as a master-client model on an IBM BlueGene, where the algorithm scales near perfectly from 64 to 4096 processors in virtual processor mode. Starting from a completely extended conformation, we optimize a population of 64 conformations of the protein in our all-atom free-energy model PFF01. Using 2048 processors the algorithm predictively folds the protein to a near-native conformation with an RMS deviation of 3.43 A in < 24 h.
寻找在全原子水平上描述蛋白质折叠过程的高效且具有预测性的方法,仍然是一项重大的计算挑战。诸如本研究中使用的IBM蓝色基因等多万亿次浮点运算架构的开发,部分是受此类研究的巨大计算需求推动。在此,我们报告了使用进化随机优化技术对含40个氨基酸的HIV辅助蛋白进行全原子预测折叠的情况。我们在IBM蓝色基因上以主-客户端模型实现了该优化方法,在虚拟处理器模式下,该算法从64个处理器扩展到4096个处理器时几乎能完美扩展。从完全伸展的构象开始,我们在全原子自由能模型PFF01中对该蛋白质的64种构象组成的群体进行优化。使用2048个处理器,该算法能在不到24小时内将蛋白质预测折叠成接近天然的构象,均方根偏差为3.43埃。