Suppr超能文献

一氧化氮合酶的底物特异性和同工型特异性双加氧复合物

Substrate- and isoform-specific dioxygen complexes of nitric oxide synthase.

作者信息

Li David, Kabir Mariam, Stuehr Dennis J, Rousseau Denis L, Yeh Syun-Ru

机构信息

Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.

出版信息

J Am Chem Soc. 2007 May 30;129(21):6943-51. doi: 10.1021/ja070683j. Epub 2007 May 8.

Abstract

Nitric oxide synthase (NOS) catalyzes the formation of NO via a consecutive two-step reaction. In the first step, L-arginine (Arg) is converted to N-hydroxy-L-arginine (NOHA). In the second step, NOHA is further converted to citrulline and nitric oxide (NO). To assess the mechanistic differences between the two steps of the reaction, we have used resonance Raman spectroscopy combined with a homemade continuous-flow rapid solution mixer to study the structural properties of the metastable dioxygen-bound complexes of the oxygenase domain of inducible NOS (iNOSoxy). We identified the O-O stretching frequency of the substrate-free enzyme at 1133 cm-1. This frequency is insensitive to the presence of tetrahydrobiopterin, but it shifts to 1126 cm-1 upon binding of Arg, which we attribute to H-bonding interactions to the terminal oxygen atom of the heme iron-bound dioxygen. In contrast, the addition of NOHA to the enzyme did not bring about a shift in the frequency of the O-O stretching mode, because, unlike Arg, there is no H-bond associated with the terminal oxygen atom of the dioxygen. The substrate-specific H-bonding interactions play a critical role in determining the fate of the key peroxy intermediate. In the first step of the reaction, the H-bonds facilitate the rupture of the O-O bond, leading to the formation of the active ferryl species, which is essential for the oxidation of the Arg. On the other hand, in the second step of the reaction, the absence of the H-bonds prevents the premature O-O bond cleavage, such that the peroxy intermediate can perform a nucleophilic addition reaction to the substrate, NOHA.

摘要

一氧化氮合酶(NOS)通过连续两步反应催化一氧化氮(NO)的形成。第一步,L-精氨酸(Arg)转化为N-羟基-L-精氨酸(NOHA)。第二步,NOHA进一步转化为瓜氨酸和一氧化氮(NO)。为了评估反应两步之间的机制差异,我们使用共振拉曼光谱结合自制的连续流动快速溶液混合器来研究诱导型NOS(iNOSoxy)加氧酶结构域的亚稳双氧结合复合物的结构性质。我们确定了无底物酶的O-O伸缩频率为1133 cm-1。该频率对四氢生物蝶呤的存在不敏感,但在Arg结合后会移至1126 cm-1,我们将其归因于与血红素铁结合的双氧末端氧原子的氢键相互作用。相比之下,向酶中添加NOHA并没有导致O-O伸缩模式频率的变化,因为与Arg不同,双氧的末端氧原子没有相关的氢键。底物特异性氢键相互作用在决定关键过氧中间体的命运中起关键作用。在反应的第一步,氢键促进O-O键的断裂,导致活性高铁物种的形成,这对于Arg的氧化至关重要。另一方面,在反应的第二步,氢键的缺失阻止了O-O键的过早断裂,使得过氧中间体能够对底物NOHA进行亲核加成反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验