Suppr超能文献

利用UniformMu转座子标签群体对玉米进行序列索引突变分析。

Sequence-indexed mutations in maize using the UniformMu transposon-tagging population.

作者信息

Settles A Mark, Holding David R, Tan Bao Cai, Latshaw Susan P, Liu Juan, Suzuki Masaharu, Li Li, O'Brien Brent A, Fajardo Diego S, Wroclawska Ewa, Tseung Chi-Wah, Lai Jinsheng, Hunter Charles T, Avigne Wayne T, Baier John, Messing Joachim, Hannah L Curtis, Koch Karen E, Becraft Philip W, Larkins Brian A, McCarty Donald R

机构信息

Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.

出版信息

BMC Genomics. 2007 May 9;8:116. doi: 10.1186/1471-2164-8-116.

Abstract

BACKGROUND

Gene knockouts are a critical resource for functional genomics. In Arabidopsis, comprehensive knockout collections were generated by amplifying and sequencing genomic DNA flanking insertion mutants. These Flanking Sequence Tags (FSTs) map each mutant to a specific locus within the genome. In maize, FSTs have been generated using DNA transposons. Transposable elements can generate unstable insertions that are difficult to analyze for simple knockout phenotypes. Transposons can also generate somatic insertions that fail to segregate in subsequent generations.

RESULTS

Transposon insertion sites from 106 UniformMu FSTs were tested for inheritance by locus-specific PCR. We confirmed 89% of the FSTs to be germinal transposon insertions. We found no evidence for somatic insertions within the 11% of insertion sites that were not confirmed. Instead, this subset of insertion sites had errors in locus-specific primer design due to incomplete or low-quality genomic sequences. The locus-specific PCR assays identified a knockout of a 6-phosphogluconate dehydrogenase gene that co-segregates with a seed mutant phenotype. The mutant phenotype linked to this knockout generates novel hypotheses about the role for the plastid-localized oxidative pentose phosphate pathway during grain-fill.

CONCLUSION

We show that FSTs from the UniformMu population identify stable, germinal insertion sites in maize. Moreover, we show that these sequence-indexed mutations can be readily used for reverse genetic analysis. We conclude from these data that the current collection of 1,882 non-redundant insertion sites from UniformMu provide a genome-wide resource for reverse genetics.

摘要

背景

基因敲除是功能基因组学的关键资源。在拟南芥中,通过扩增和测序插入突变体侧翼的基因组DNA生成了全面的敲除文库。这些侧翼序列标签(FSTs)将每个突变体定位到基因组内的特定位点。在玉米中,已利用DNA转座子生成了FSTs。转座元件可产生不稳定的插入,难以分析其简单的敲除表型。转座子还可产生体细胞插入,这些插入在后代中无法分离。

结果

通过位点特异性PCR检测了106个UniformMu FSTs的转座子插入位点的遗传情况。我们证实89%的FSTs为生殖系转座子插入。在未得到证实的11%的插入位点中,我们未发现体细胞插入的证据。相反,由于基因组序列不完整或质量低,该插入位点子集在位点特异性引物设计上存在错误。位点特异性PCR分析鉴定出一个与种子突变表型共分离的6-磷酸葡萄糖酸脱氢酶基因的敲除。与该敲除相关的突变表型产生了关于质体定位的氧化戊糖磷酸途径在籽粒灌浆过程中作用的新假说。

结论

我们表明,来自UniformMu群体的FSTs可鉴定玉米中稳定的生殖系插入位点。此外,我们表明这些序列索引突变可很容易地用于反向遗传学分析。我们从这些数据得出结论,目前来自UniformMu的1882个非冗余插入位点的文库为反向遗传学提供了全基因组资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201b/1878487/452ced42c211/1471-2164-8-116-1.jpg

相似文献

1
Sequence-indexed mutations in maize using the UniformMu transposon-tagging population.
BMC Genomics. 2007 May 9;8:116. doi: 10.1186/1471-2164-8-116.
2
Genetic and molecular analyses of UniformMu transposon insertion lines.
Methods Mol Biol. 2013;1057:157-66. doi: 10.1007/978-1-62703-568-2_11.
3
Steady-state transposon mutagenesis in inbred maize.
Plant J. 2005 Oct;44(1):52-61. doi: 10.1111/j.1365-313X.2005.02509.x.
4
: A Sequence-Indexed Resource of Transposon-Induced Maize Mutations for Functional Genomics Studies.
Plant Physiol. 2020 Oct;184(2):620-631. doi: 10.1104/pp.20.00478. Epub 2020 Aug 7.
5
A Sequence-Indexed Insertional Library for Maize Functional Genomics Study.
Plant Physiol. 2019 Dec;181(4):1404-1414. doi: 10.1104/pp.19.00894. Epub 2019 Oct 21.
6
Molecular analysis of high-copy insertion sites in maize.
Nucleic Acids Res. 2004 Apr 1;32(6):e54. doi: 10.1093/nar/gnh052.
7
Genome-wide mutagenesis of Zea mays L. using RescueMu transposons.
Genome Biol. 2004;5(10):R82. doi: 10.1186/gb-2004-5-10-r82. Epub 2004 Sep 23.
9
Transposon tagging using Activator (Ac) in maize.
Methods Mol Biol. 2003;236:157-76. doi: 10.1385/1-59259-413-1:157.
10
A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana.
Plant Mol Biol. 2002 Sep;50(1):93-110. doi: 10.1023/a:1016099215667.

引用本文的文献

1
Identification of the ZmATG18 subfamily genes in maize and the role of ZmATG18a in drought stress.
BMC Genomics. 2025 Aug 26;26(1):777. doi: 10.1186/s12864-025-11910-5.
2
Examination of gene expression in insertion alleles of during vegetative development in .
MicroPubl Biol. 2025 Aug 5;2025. doi: 10.17912/micropub.biology.001643. eCollection 2025.
3
The Dynamic Effects of Transposon Insertions on Transcription During Vegetative Development in .
MicroPubl Biol. 2025 Jul 14;2025. doi: 10.17912/micropub.biology.001640. eCollection 2025.
4
Brassinosteroid biosynthesis and signaling: Conserved and diversified functions of core genes across multiple plant species.
Plant Commun. 2024 Sep 9;5(9):100982. doi: 10.1016/j.xplc.2024.100982. Epub 2024 May 29.
5
COI1 F-box proteins regulate DELLA protein levels, growth, and photosynthetic efficiency in maize.
Plant Cell. 2024 Sep 3;36(9):3237-3259. doi: 10.1093/plcell/koae161.
6
ZmPILS6 is an auxin efflux carrier required for maize root morphogenesis.
Proc Natl Acad Sci U S A. 2024 May 28;121(22):e2313216121. doi: 10.1073/pnas.2313216121. Epub 2024 May 23.
7
The maize () gene encodes a conserved DUF3732 domain and is homologous to the rice gene.
Plant Direct. 2024 Feb 13;8(2):e567. doi: 10.1002/pld3.567. eCollection 2024 Feb.
8
Independent evolution of transposase and TIRs facilitated by recombination between transposons from divergent clades in maize.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2305298120. doi: 10.1073/pnas.2305298120. Epub 2023 Jul 25.
9
Maize kernel development.
Mol Breed. 2021 Jan 3;41(1):2. doi: 10.1007/s11032-020-01195-9. eCollection 2021 Jan.
10
Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress.
Front Plant Sci. 2022 Dec 9;13:1064847. doi: 10.3389/fpls.2022.1064847. eCollection 2022.

本文引用的文献

1
Molecular analysis of multiple mutator-derived alleles of the bronze locus of maize.
Genetics. 1989 Jun;122(2):439-45. doi: 10.1093/genetics/122.2.439.
2
Uneven chromosome contraction and expansion in the maize genome.
Genome Res. 2006 Oct;16(10):1241-51. doi: 10.1101/gr.5338906. Epub 2006 Aug 10.
3
Advances in maize genomics: the emergence of positional cloning.
Curr Opin Plant Biol. 2006 Apr;9(2):164-71. doi: 10.1016/j.pbi.2006.01.006. Epub 2006 Feb 2.
4
OryGenesDB: a database for rice reverse genetics.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D736-40. doi: 10.1093/nar/gkj012.
5
Changes in flux pattern of the central carbohydrate metabolism during kernel development in maize.
Phytochemistry. 2005 Nov;66(22):2632-42. doi: 10.1016/j.phytochem.2005.09.017. Epub 2005 Nov 7.
6
Steady-state transposon mutagenesis in inbred maize.
Plant J. 2005 Oct;44(1):52-61. doi: 10.1111/j.1365-313X.2005.02509.x.
7
Quality assessment of maize assembled genomic islands (MAGIs) and large-scale experimental verification of predicted genes.
Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12282-7. doi: 10.1073/pnas.0503394102. Epub 2005 Aug 15.
8
Evolution of DNA sequence nonhomologies among maize inbreds.
Plant Cell. 2005 Feb;17(2):343-60. doi: 10.1105/tpc.104.025627. Epub 2005 Jan 19.
9
Molecular genetics using T-DNA in rice.
Plant Cell Physiol. 2005 Jan;46(1):14-22. doi: 10.1093/pcp/pci502. Epub 2005 Jan 19.
10
Genome-wide mutagenesis of Zea mays L. using RescueMu transposons.
Genome Biol. 2004;5(10):R82. doi: 10.1186/gb-2004-5-10-r82. Epub 2004 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验