Suppr超能文献

中间丝:历史视角

Intermediate filaments: a historical perspective.

作者信息

Oshima Robert G

机构信息

Oncodevelopmental Biology Program, Cancer Research Center, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Exp Cell Res. 2007 Jun 10;313(10):1981-94. doi: 10.1016/j.yexcr.2007.04.007. Epub 2007 Apr 11.

Abstract

Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years.

摘要

细胞内的蛋白质细丝,其大小介于肌动蛋白微丝和微管之间,由种类惊人的组织特异性蛋白质组成,这些蛋白质通常与其他丝状系统相互连接以保持机械稳定性,并由多种具有特殊功能的蛋白质修饰。负责聚合成单个10纳米细丝的卷曲螺旋α螺旋结构的序列保守性,将中间丝蛋白分类为一个大的基因家族。单个细丝进一步组装成在光学显微镜下可见的束状和分支细胞骨架。然而,可能是可变末端结构域的多样性对不同功能的贡献最大。对中间丝蛋白功能的探索,已发现其在皮肤、心脏、肌肉、肝脏、大脑、脂肪组织疾病甚至早衰中发挥作用。中间丝作为结构元件和用于组织修饰分子分布的支架的多样用途,与其他细胞骨架元件形成对比。本综述旨在回顾这样一个多样化的领域在大约30年里是如何出现和变化的。

相似文献

1
Intermediate filaments: a historical perspective.
Exp Cell Res. 2007 Jun 10;313(10):1981-94. doi: 10.1016/j.yexcr.2007.04.007. Epub 2007 Apr 11.
2
[Intermediate-filament-associated diseases].
Biol Aujourdhui. 2011;205(3):139-46. doi: 10.1051/jbio/2011015. Epub 2011 Oct 11.
3
Intermediate Filaments Supporting Cell Shape and Growth in Bacteria.
Subcell Biochem. 2017;84:161-211. doi: 10.1007/978-3-319-53047-5_6.
4
Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography.
Exp Cell Res. 2007 Jun 10;313(10):2217-27. doi: 10.1016/j.yexcr.2007.03.037. Epub 2007 Apr 11.
5
Towards a molecular description of intermediate filament structure and assembly.
Exp Cell Res. 2007 Jun 10;313(10):2204-16. doi: 10.1016/j.yexcr.2007.04.009. Epub 2007 Apr 12.
6
Assembly of intermediate filaments.
Bioessays. 1993 Sep;15(9):605-11. doi: 10.1002/bies.950150906.
7
Dynamic organisation of intermediate filaments and associated proteins during the cell cycle.
Bioessays. 1997 Apr;19(4):297-305. doi: 10.1002/bies.950190407.
8
Plectin: a cytolinker by design.
Biol Chem. 1999 Feb;380(2):151-8. doi: 10.1515/BC.1999.023.

引用本文的文献

2
Deciphering vimentin assembly: Bridging theoretical models and experimental approaches.
Mol Cells. 2024 Jul;47(7):100080. doi: 10.1016/j.mocell.2024.100080. Epub 2024 Jun 11.
3
Keratin isoform shifts modulate motility signals during wound healing.
bioRxiv. 2024 Apr 21:2023.05.04.538989. doi: 10.1101/2023.05.04.538989.
4
Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components.
Genes (Basel). 2023 Jan 20;14(2):272. doi: 10.3390/genes14020272.
5
A cytoplasmic escapee: desmin is going nuclear.
Turk J Biol. 2021 Dec 14;45(6):711-719. doi: 10.3906/biy-2107-54. eCollection 2021.
8
Intermediate filaments in cardiomyopathy.
Biophys Rev. 2018 Aug;10(4):1007-1031. doi: 10.1007/s12551-018-0443-2. Epub 2018 Jul 19.
10
A curated catalog of canine and equine keratin genes.
PLoS One. 2017 Aug 28;12(8):e0180359. doi: 10.1371/journal.pone.0180359. eCollection 2017.

本文引用的文献

1
Intermediate filaments as signaling platforms.
Sci STKE. 2006 Dec 19;2006(366):pe53. doi: 10.1126/stke.3662006pe53.
2
Human laminopathies: nuclei gone genetically awry.
Nat Rev Genet. 2006 Dec;7(12):940-52. doi: 10.1038/nrg1906.
3
A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death.
EMBO J. 2006 Oct 18;25(20):4808-19. doi: 10.1038/sj.emboj.7601366. Epub 2006 Oct 12.
4
New consensus nomenclature for mammalian keratins.
J Cell Biol. 2006 Jul 17;174(2):169-74. doi: 10.1083/jcb.200603161. Epub 2006 Jul 10.
5
A disease- and phosphorylation-related nonmechanical function for keratin 8.
J Cell Biol. 2006 Jul 3;174(1):115-25. doi: 10.1083/jcb.200602146.
6
A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth.
Nature. 2006 May 18;441(7091):362-5. doi: 10.1038/nature04659.
7
Keratin 17 modulates hair follicle cycling in a TNFalpha-dependent fashion.
Genes Dev. 2006 May 15;20(10):1353-64. doi: 10.1101/gad.1387406.
8
Nuclear lamins, diseases and aging.
Curr Opin Cell Biol. 2006 Jun;18(3):335-41. doi: 10.1016/j.ceb.2006.03.007. Epub 2006 Apr 24.
9
Prelamin A and lamin A appear to be dispensable in the nuclear lamina.
J Clin Invest. 2006 Mar;116(3):743-52. doi: 10.1172/JCI27125.
10
Vimentin function in lymphocyte adhesion and transcellular migration.
Nat Cell Biol. 2006 Feb;8(2):156-62. doi: 10.1038/ncb1355. Epub 2006 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验