Wessel Jennifer, Zapala Matthew A, Schork Nicholas J
Polymorphism Research Laboratory, Department of Psychiatry, University of California at San Diego, La Jolla, CA 92093, USA.
Genomics. 2007 Jul;90(1):132-42. doi: 10.1016/j.ygeno.2007.03.003. Epub 2007 May 9.
The availability of high-throughput genotyping technologies and microarray assays has allowed researchers to consider pursuing investigations whose ultimate goal is the identification of genetic variations that influence levels of gene expression, e.g., "expression quantitative trait locus" or "eQTL" mapping studies. However, the large number of genes whose expression levels can be tested for association with genetic variations in such studies can create both statistical and biological interpretive problems. We consider the integrated analysis of eQTL mapping data that incorporates pathway, function, and disease process information. The goal of this analysis is to determine if compelling patterns emerge from the data that are consistent with the notion that perturbations in the molecular physiologic environment induced by genetic variations implicate the expression patterns of multiple genes via genetic network relationships or feedback mechanisms. We apply available genetic network and pathway analysis software, as well as a novel regression analysis technique, to carry out the proposed studies. We also consider extensions of the proposed strategies and areas of future research.
高通量基因分型技术和微阵列分析方法的出现,使得研究人员能够考虑开展一些研究,其最终目标是识别影响基因表达水平的遗传变异,例如“表达定量性状位点”或“eQTL”定位研究。然而,在此类研究中,大量可测试其表达水平与遗传变异关联的基因,可能会产生统计学和生物学解释方面的问题。我们考虑对整合了通路、功能和疾病过程信息的eQTL定位数据进行综合分析。该分析的目标是确定数据中是否出现了令人信服的模式,这些模式与以下观点一致:即遗传变异引起的分子生理环境扰动通过遗传网络关系或反馈机制牵涉到多个基因的表达模式。我们应用现有的遗传网络和通路分析软件,以及一种新颖的回归分析技术来开展所提议的研究。我们还考虑了所提议策略的扩展以及未来研究的领域。