Shepherd T M, Ozarslan E, Yachnis A T, King M A, Blackband S J
Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32209, USA.
AJNR Am J Neuroradiol. 2007 May;28(5):958-64.
Observing changes to water diffusivity and fractional anisotropy (FA) for particular hippocampal regions may improve the sensitivity and specificity of diffusion tensor MR imaging for hippocampal pathologies like Alzheimer disease and mesial temporal sclerosis. As a first step toward this goal, this study characterized the cytoarchitectural features underlying diffusion anisotropy in human hippocampus autopsy specimens at 60-microm in-plane resolution.
Eight-millimeter coronal segments of the hippocampal body were dissected from 5 autopsy specimens (mean = 55.6 +/- 6.2 years of age) with short postmortem intervals to fixation (21.2 +/- 5.7 hours) and no histologic evidence of neuropathology. Diffusion tensor microscopy data were collected from hippocampal specimens by using a 14.1T magnet with a protocol that included 21 unique diffusion gradient orientations (diffusion time = 17 ms, b = 1250 s/mm(2)). The resulting images were used to determine the mean diffusivity, FA, and principal fiber orientation for manually segmented hippocampal regions that included the stratum oriens, stratum radiatum, stratum pyramidale (CA1 and CA3), stratum lacunosum-molecular, hilus, molecular layer, granule cell layer, fimbria, and subiculum.
Diffusion-weighted images had high signal-to-noise ratios (31.1 +/- 13.0) and delineated hippocampal anatomy well. Water diffusivity ranged from 1.21 +/- 0.22 x 10(-4) mm(2)/s in the fimbria to 3.48 +/- 0.72 x 10(-4) mm(2)/s in granule cells (analysis of variance, P<.001). Color fiber-orientation maps indicated the underlying microstructures responsible for diffusion anisotropy in the hippocampal lamina.
Diffusion tensor microscopy provided novel microstructural information about the different lamina of the human hippocampus. These ex vivo data obtained at high-magnetic-field strengths can be used to study injury-specific diffusion changes to susceptible hippocampal regions and may lead to more specific MR imaging surrogate markers for Alzheimer disease or epilepsy.
观察特定海马区域水扩散率和各向异性分数(FA)的变化,可能会提高扩散张量磁共振成像对阿尔茨海默病和内侧颞叶硬化等海马病变的敏感性和特异性。作为朝着这一目标迈出的第一步,本研究以60微米的平面分辨率,对人类海马尸检标本中扩散各向异性的细胞结构特征进行了表征。
从5例尸检标本(平均年龄 = 55.6±6.2岁)中切取海马体的8毫米冠状切片,这些标本死后至固定的间隔时间较短(21.2±5.7小时),且无神经病理学的组织学证据。使用14.1T磁体,通过包含21个独特扩散梯度方向的方案(扩散时间 = 17毫秒,b = 1250秒/毫米²),从海马标本中收集扩散张量显微镜数据。所得图像用于确定手动分割的海马区域的平均扩散率、FA和主要纤维方向,这些区域包括原层、放射层、锥体细胞层(CA1和CA3)、腔隙分子层、海马门、分子层、颗粒细胞层、伞和下托。
扩散加权图像具有高信噪比(31.1±13.0),能很好地勾勒出海马解剖结构。水扩散率范围从伞中的(1.21±0.22)×10⁻⁴毫米²/秒到颗粒细胞中的(3.48±0.72)×10⁻⁴毫米²/秒(方差分析,P<.001)。彩色纤维方向图显示了海马板层中负责扩散各向异性的潜在微观结构。
扩散张量显微镜提供了关于人类海马不同板层的新微观结构信息。这些在高磁场强度下获得的离体数据可用于研究易损海马区域的损伤特异性扩散变化,并可能导致针对阿尔茨海默病或癫痫的更特异性磁共振成像替代标志物。