Suppr超能文献

整合网络分析确定一氧化氮反应网络以及二羟基酸脱水酶是大肠杆菌中的关键靶点。

Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli.

作者信息

Hyduke Daniel R, Jarboe Laura R, Tran Linh M, Chou Katherine J Y, Liao James C

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 May 15;104(20):8484-9. doi: 10.1073/pnas.0610888104. Epub 2007 May 9.

Abstract

Nitric oxide (NO) is used by mammalian immune systems to counter microbial invasions and is produced by bacteria during denitrification. As a defense, microorganisms possess a complex network to cope with NO. Here we report a combined transcriptomic, chemical, and phenotypic approach to identify direct NO targets and construct the biochemical response network. In particular, network component analysis was used to identify transcription factors that are perturbed by NO. Such information was screened with potential NO reaction mechanisms and phenotypic data from genetic knockouts to identify active chemistry and direct NO targets in Escherichia coli. This approach identified the comprehensive E. coli NO response network and evinced that NO halts bacterial growth via inhibition of the branched-chain amino acid biosynthesis enzyme dihydroxyacid dehydratase. Because mammals do not synthesize branched-chain amino acids, inhibition of dihydroxyacid dehydratase may have served to foster the role of NO in the immune arsenal.

摘要

哺乳动物免疫系统利用一氧化氮(NO)对抗微生物入侵,而细菌在反硝化过程中会产生NO。作为一种防御机制,微生物拥有一个复杂的网络来应对NO。在此,我们报告了一种结合转录组学、化学和表型分析的方法,以识别NO的直接靶点并构建生化反应网络。具体而言,我们使用网络组件分析来识别受NO干扰的转录因子。这些信息与潜在的NO反应机制以及基因敲除的表型数据进行筛选,以确定大肠杆菌中的活性化学物质和NO的直接靶点。这种方法确定了完整的大肠杆菌NO反应网络,并表明NO通过抑制支链氨基酸生物合成酶二羟基酸脱水酶来阻止细菌生长。由于哺乳动物不合成支链氨基酸,抑制二羟基酸脱水酶可能有助于增强NO在免疫武器库中的作用。

相似文献

7
Function and maturation of the Fe-S center in dihydroxyacid dehydratase from .二羟酸脱水酶中 Fe-S 中心的功能和成熟。
J Biol Chem. 2018 Mar 23;293(12):4422-4433. doi: 10.1074/jbc.RA117.001592. Epub 2018 Feb 7.

引用本文的文献

8
Nitric-oxide-driven oxygen release in anoxic .缺氧条件下一氧化氮驱动的氧气释放
iScience. 2021 Nov 6;24(12):103404. doi: 10.1016/j.isci.2021.103404. eCollection 2021 Dec 17.
10
How Microbes Defend Themselves From Incoming Hydrogen Peroxide.微生物如何抵御入侵的过氧化氢。
Front Immunol. 2021 Apr 27;12:667343. doi: 10.3389/fimmu.2021.667343. eCollection 2021.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验