Suppr超能文献

视觉图形分析:一种研究症状随时间变化轨迹的技术。

Visual graphical analysis: a technique to investigate symptom trajectories over time.

作者信息

Brown Carlton G, McGuire Deborah B, Beck Susan L, Peterson Douglas E, Mooney Kathleen H

出版信息

Nurs Res. 2007 May-Jun;56(3):195-201. doi: 10.1097/01.NNR.0000270029.82736.5a.

Abstract

BACKGROUND

Research to address clinical symptoms and the way they change over time in an individual is of paramount importance to healthcare researchers who are interested in improving the quality of life for ill patients. However, typical statistical methods that rely on means can obscure individual trajectories of change. Visual graphical analysis (VGA) is a technique that can provide researchers with an alternative method of quantitative statistical analysis that is more sensitive to individual change and variation.

OBJECTIVES

To (a) describe the use of VGA as a method to evaluate longitudinal data, (b) discuss challenges to using this method, and (c) offer recommendations for future research in which the method could be implemented.

APPROACH

This methodological article uses data collected from a primary study to present the method of VGA. Daily self-reported sore mouth severity scores from patients receiving outpatient chemotherapy were used in this VGA. The steps of VGA include (a) determining inclusion criteria, (b) managing missing data, (c) creating visual graphs, (d) identifying specific patterns, and (e) performing validation and verification.

DISCUSSION

Because symptoms occur differently for each patient, this method allows researchers to see symptom trajectories on an individual basis. Creation and analysis of longitudinal graphs could be used also to inspect other symptoms or clinical problems such as headaches, fatigue, constipation, nausea and vomiting, and psychological difficulties. The value of VGA is that it allows a researcher to study the patterns of an individual's experience, as opposed to averaging all individuals' responses over time. Although graphical analysis is exploratory in nature, it may lead to enhanced longitudinal recognition of symptoms that might not be identified otherwise by quantitative data analysis using summary statistics.

摘要

背景

对于那些致力于改善患病患者生活质量的医疗保健研究人员而言,针对临床症状及其随时间变化方式的研究至关重要。然而,依赖均值的典型统计方法可能会掩盖个体的变化轨迹。视觉图形分析(VGA)是一种可为研究人员提供另一种定量统计分析方法的技术,这种方法对个体变化和差异更为敏感。

目的

(a)描述VGA作为评估纵向数据的一种方法的应用;(b)讨论使用该方法所面临的挑战;(c)为未来可应用该方法的研究提供建议。

方法

这篇方法学文章使用了从一项初步研究中收集的数据来介绍VGA方法。本VGA使用了接受门诊化疗患者每日自我报告的口腔疼痛严重程度评分。VGA的步骤包括:(a)确定纳入标准;(b)处理缺失数据;(c)创建视觉图形;(d)识别特定模式;(e)进行验证和核实。

讨论

由于每个患者的症状表现不同,该方法使研究人员能够逐个查看症状轨迹。纵向图形的创建和分析也可用于检查其他症状或临床问题,如头痛、疲劳、便秘、恶心和呕吐以及心理问题。VGA的价值在于它使研究人员能够研究个体的经历模式,而不是将所有个体的反应随时间进行平均。尽管图形分析本质上是探索性的,但它可能会增强对症状的纵向识别,而这些症状可能无法通过使用汇总统计数据的定量数据分析来识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验