Cohen Adam E, Moerner W E
Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12622-7. doi: 10.1073/pnas.0610396104. Epub 2007 May 11.
Thermal fluctuations agitate molecules in solution over a broad range of times and distances. By passively watching the shape fluctuations of a thermally driven biomolecule, one can infer properties of the underlying interactions that determine the motion. We applied this concept to single molecules of fluorescently labeled lambda-DNA, a key model system for polymer physics. In contrast to most other single-molecule DNA experiments, we examined the unstretched, equilibrium state of DNA by using an anti-Brownian electrokinetic trap to confine the center of mass of the DNA without perturbing its internal dynamics. We analyze the long-wavelength conformational normal modes, calculate their spring constants, and measure linear and nonlinear couplings between modes. The modes show strong signs of nonlinear hydrodynamics, a feature of the underlying equations of polymer dynamics that has not previously been reported and is neglected in the widely used Rouse and Zimm approximations.
热涨落会在很宽的时间和距离范围内扰动溶液中的分子。通过被动观察热驱动生物分子的形状涨落,人们可以推断出决定其运动的潜在相互作用的性质。我们将这一概念应用于荧光标记的λ-DNA单分子,这是聚合物物理学的一个关键模型系统。与大多数其他单分子DNA实验不同,我们通过使用反布朗电动阱来限制DNA的质心,同时不干扰其内部动力学,从而研究了未拉伸的DNA平衡态。我们分析了长波长构象正常模式,计算了它们的弹簧常数,并测量了模式之间的线性和非线性耦合。这些模式显示出强烈的非线性流体动力学迹象,这是聚合物动力学基本方程的一个特征,此前尚未有报道,且在广泛使用的劳斯(Rouse)和齐姆(Zimm)近似中被忽略。