Suppr超能文献

溶液中单纳米颗粒的无标记抗布朗捕获

Label-Free Anti-Brownian Trapping of Single Nanoparticles in Solution.

作者信息

Carpenter William B, Lavania Abhijit A, Squires Allison H, Moerner W E

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, United States.

Department of Applied Physics, Stanford University, Stanford, California 94305, United States.

出版信息

J Phys Chem C Nanomater Interfaces. 2024 Nov 19;128(47):20275-20286. doi: 10.1021/acs.jpcc.4c05878. eCollection 2024 Nov 28.

Abstract

Today, biomolecular nanoparticles are prevalent as diagnostic tools and molecular delivery carriers, and it is particularly useful to examine individuals within a sample population to quantify the variations between objects and directly observe the molecular dynamics involving these objects. Using interferometric scattering as a highly sensitive label-free detection scheme, we recently developed the interferometric scattering anti-Brownian electrokinetic (ISABEL) trap to hold a single nanoparticle in solution for extended optical observation. In this perspective, we describe how we implemented this trap, how it extends the capabilities of previous ABEL traps, and how we have begun to study individual carboxysomes, a fascinating biological carbon fixation nanocompartment. By monitoring single nanocompartments for seconds to minutes in the ISABEL trap using simultaneous interferometric scattering and fluorescence spectroscopy, we have demonstrated single-compartment mass measurements, cargo-loading trends, and redox sensing inside individual particles. These experiments benefit from rich multiplexed correlative measurements utilizing both scattering and fluorescence with many exciting future capabilities within reach.

摘要

如今,生物分子纳米颗粒作为诊断工具和分子递送载体十分普遍,对样本群体中的个体进行检测以量化物体间的差异并直接观察涉及这些物体的分子动力学尤为有用。利用干涉散射作为一种高灵敏度的无标记检测方案,我们最近开发了干涉散射抗布朗电动(ISABEL)阱,用于在溶液中捕获单个纳米颗粒以进行长时间光学观察。在此观点文章中,我们描述了我们如何实现这个阱,它如何扩展了先前ABEL阱的功能,以及我们如何开始研究单个羧酶体,这是一种迷人的生物碳固定纳米隔室。通过在ISABEL阱中使用同时干涉散射和荧光光谱法对单个纳米隔室进行数秒到数分钟的监测,我们展示了单个隔室的质量测量、货物装载趋势以及单个颗粒内的氧化还原传感。这些实验受益于丰富的多重相关测量,利用散射和荧光,许多令人兴奋的未来功能也触手可及。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae89/11613540/d33f1b8d6ba1/jp4c05878_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验