Werner Tomás
Department of Cybernetics, Czech Technical University, Praha, Czech Republic.
IEEE Trans Pattern Anal Mach Intell. 2007 Jul;29(7):1165-79. doi: 10.1109/TPAMI.2007.1036.
The max-sum labeling problem, defined as maximizing a sum of binary (i.e., pairwise) functions of discrete variables, is a general NP-hard optimization problem with many applications, such as computing the MAP configuration of a Markov random field. We review a not widely known approach to the problem, developed by Ukrainian researchers Schlesinger et al. in 1976, and show how it contributes to recent results, most importantly, those on the convex combination of trees and tree-reweighted max-product. In particular, we review Schlesinger et al.'s upper bound on the max-sum criterion, its minimization by equivalent transformations, its relation to the constraint satisfaction problem, the fact that this minimization is dual to a linear programming relaxation of the original problem, and the three kinds of consistency necessary for optimality of the upper bound. We revisit problems with Boolean variables and supermodular problems. We describe two algorithms for decreasing the upper bound. We present an example application for structural image analysis.
最大和标记问题被定义为最大化离散变量的二元(即成对)函数之和,它是一个具有许多应用的一般NP难优化问题,比如计算马尔可夫随机场的最大后验概率(MAP)配置。我们回顾一种由乌克兰研究人员施莱辛格等人于1976年提出的、并不广为人知的解决该问题的方法,并展示它如何对近期的研究成果有所贡献,最重要的是,对关于树的凸组合和树重加权最大积的研究成果的贡献。具体而言,我们回顾施莱辛格等人关于最大和准则的上界、通过等价变换对其上界的最小化、它与约束满足问题的关系、这种最小化与原始问题的线性规划松弛对偶这一事实,以及上界最优性所需的三种一致性。我们重新审视布尔变量问题和超模问题。我们描述两种降低上界的算法。我们给出一个用于结构图像分析的示例应用。