Suppr超能文献

用于能量最小化的收敛树重加权消息传递

Convergent tree-reweighted message passing for energy minimization.

作者信息

Kolmogorov Vladimir

机构信息

University College London, Adastral Park, Martlesham Heath, IP5 3RE, UK.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1568-83. doi: 10.1109/TPAMI.2006.200.

Abstract

Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper, we focus on the recent technique proposed by Wainwright et al. [33]--tree-reweighted max-product message passing (TRW). It was inspired by the problem of maximizing a lower bound on the energy. However, the algorithm is not guaranteed to increase this bound--it may actually go down. In addition, TRW does not always converge. We develop a modification of this algorithm which we call sequential tree-reweighted message passing. Its main property is that the bound is guaranteed not to decrease. We also give a weak tree agreement condition which characterizes local maxima of the bound with respect to TRW algorithms. We prove that our algorithm has a limit point that achieves weak tree agreement. Finally, we show that, our algorithm requires half as much memory as traditional message passing approaches. Experimental results demonstrate that on certain synthetic and real problems, our algorithm outperforms both the ordinary belief propagation and tree-reweighted algorithm in [33]. In addition, on stereo problems with Potts interactions, we obtain a lower energy than graph cuts.

摘要

离散能量最小化算法在计算机视觉中具有至关重要的地位。在本文中,我们聚焦于Wainwright等人[33]提出的最新技术——树重加权最大乘积消息传递(TRW)。它的灵感来源于最大化能量下界的问题。然而,该算法并不能保证增加这个下界——实际上它可能会下降。此外,TRW并不总是收敛。我们对该算法进行了改进,称之为顺序树重加权消息传递。其主要特性是保证下界不会减小。我们还给出了一个弱树一致性条件,该条件刻画了关于TRW算法的下界局部最大值。我们证明了我们的算法有一个达到弱树一致性的极限点。最后,我们表明,我们的算法所需内存仅为传统消息传递方法的一半。实验结果表明,在某些合成问题和实际问题上我们的算法优于[33]中的普通置信传播算法和树重加权算法。此外,在具有Potts相互作用的立体问题上,我们得到了比图割更低的能量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验