Suppr超能文献

基于图割的非次模函数最小化——综述

Minimizing nonsubmodular functions with graph cuts - a review.

作者信息

Kolmogorov Vladimir, Rother Carsten

机构信息

University College London, Martlesham Heath, UK.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Jul;29(7):1274-9. doi: 10.1109/TPAMI.2007.1031.

Abstract

Optimization techniques based on graph cuts have become a standard tool for many vision applications. These techniques allow to minimize efficiently certain energy functions corresponding to pairwise Markov Random Fields (MRFs). Currently, there is an accepted view within the computer vision community that graph cuts can only be used for optimizing a limited class of MRF energies (e.g., submodular functions). In this survey, we review some results that show that graph cuts can be applied to a much larger class of energy functions (in particular, nonsubmodular functions). While these results are well-known in the optimization community, to our knowledge they were not used in the context of computer vision and MRF optimization. We demonstrate the relevance of these results to vision on the problem of binary texture restoration.

摘要

基于图割的优化技术已成为许多视觉应用的标准工具。这些技术能够有效地最小化与成对马尔可夫随机场(MRF)相对应的某些能量函数。目前,计算机视觉界有一种公认的观点,即图割只能用于优化有限类别的MRF能量(例如,次模函数)。在本次综述中,我们回顾了一些结果,这些结果表明图割可以应用于更大类别的能量函数(特别是非次模函数)。虽然这些结果在优化领域是众所周知的,但据我们所知,它们在计算机视觉和MRF优化的背景下并未被使用。我们在二值纹理恢复问题上证明了这些结果与视觉的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验