Suppr超能文献

多实验室非靶向质谱代谢组学协作以识别瓶颈并全面注释单个数据集

Multilaboratory Untargeted Mass Spectrometry Metabolomics Collaboration to Identify Bottlenecks and Comprehensively Annotate A Single Dataset.

作者信息

Houriet Joelle, Manwill Preston K, Magaña Armando Alcázar, Anderson Victoria M, Beniddir Mehdi A, Bertrand Samuel, Choi Jaewoo, Clark Trevor N, Foster Leonard J, Halabalaki Maria, Jarmusch Alan K, de Jonge Niek F, Khadilkar Aswad, MacMillan John B, Maier Claudia S, Marney Luke C, Marti Guillaume, Mikropoulou Eleni V, Olivier-Jimenez Damien, Perez Amélie, van der Hooft Justin J J, Zdouc Mitja M, Linington Roger G, Cech Nadja B

机构信息

Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States.

Life Sciences Institute, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

出版信息

Anal Chem. 2025 Aug 5;97(30):16110-16122. doi: 10.1021/acs.analchem.4c05577. Epub 2025 Jul 22.

Abstract

Annotation is the process of assigning features in mass spectrometry metabolomics data sets to putative chemical structures or "analytes." The purpose of this study was to identify challenges in the annotation of untargeted mass spectrometry metabolomics datasets and suggest strategies to overcome them. Toward this goal, we analyzed an extract of the plant ashwagandha () using liquid chromatography-mass spectrometry on two different platforms (an Orbitrap and Q-ToF) with various acquisition modes. The resulting 12 datasets were shared with ten teams that had established expertise in metabolomics data interpretation. Each team annotated at least one positive ion dataset using their own approaches. Eight teams selected the positive ion mode data-dependent acquisition (DDA) data collected on the Orbitrap platform, so the results reported for that dataset were chosen for an in-depth comparison. We compiled and cross-checked the annotations of this dataset from each laboratory to arrive at a "consensus annotation," which included 142 putative analytes, of which 13 were confirmed by comparison with standards. Each team only reported a subset (24 to 57%) of the analytes in the consensus list. Correct assignment of ion species (clusters and fragments) in MS spectra was a major bottleneck. In many cases, in-source redundant features were mistakenly considered to be independent analytes, causing annotation errors and resulting in overestimation of sample complexity. Our results suggest that better tools/approaches are needed to effectively assign feature identity, group related mass features, and query published spectral and taxonomic data when assigning putative analyte structures.

摘要

注释是在质谱代谢组学数据集中将特征分配给假定化学结构或“分析物”的过程。本研究的目的是识别非靶向质谱代谢组学数据集注释中的挑战,并提出克服这些挑战的策略。为实现这一目标,我们使用液相色谱-质谱联用技术在两个不同平台(一台轨道阱质谱仪和一台四极杆飞行时间质谱仪)上,采用多种采集模式分析了印度人参()提取物。所得的12个数据集与十个在代谢组学数据解读方面具有专业知识的团队共享。每个团队使用自己的方法注释了至少一个正离子数据集。八个团队选择了在轨道阱平台上收集的正离子模式数据依赖型采集(DDA)数据,因此选择该数据集报告的结果进行深入比较。我们汇总并交叉核对了每个实验室对该数据集的注释,以得出“共识注释”,其中包括142种假定分析物,其中13种通过与标准品比较得到确认。每个团队仅报告了共识列表中一部分(24%至57%)的分析物。在质谱图中正确分配离子种类(簇和碎片)是一个主要瓶颈。在许多情况下,源内冗余特征被错误地认为是独立分析物,导致注释错误并高估了样品复杂性。我们的结果表明,在分配假定分析物结构时,需要更好的工具/方法来有效地确定特征身份、对相关质量特征进行分组以及查询已发表的光谱和分类学数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验