Marcone B, Orlandini E, Stella A L, Zonta F
Dipartimento di Fisica, Università di Padova, I-35131 Padua, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 1):041105. doi: 10.1103/PhysRevE.75.041105. Epub 2007 Apr 11.
We give two different, statistically consistent definitions of the length l of a prime knot tied into a polymer ring. In the good solvent regime the polymer is modeled by a self avoiding polygon of N steps on cubic lattice and l is the number of steps over which the knot "spreads" in a given configuration. An analysis of extensive Monte Carlo data in equilibrium shows that the probability distribution of l as a function of N obeys a scaling of the form p(l,N) approximately l(-c)f(l/N(D)) , with c approximately equal to 1.25 and D approximately equal to 1. Both D and c could be independent of knot type. As a consequence, the knot is weakly localized, i.e.,
我们给出了系在聚合物环上的素纽结长度(l)的两种不同但在统计上一致的定义。在良溶剂状态下,聚合物由立方晶格上(N)步的自回避多边形建模,(l)是纽结在给定构型中“展开”的步数。对平衡态下大量蒙特卡罗数据的分析表明,(l)作为(N)的函数的概率分布遵循(p(l,N)\approx l^{-c}f(l/N^D))的标度形式,其中(c\approx1.25),(D\approx1)。(D)和(c)都可能与纽结类型无关。因此,纽结是弱局域化的,即(\langle l\rangle\approx N^t),其中(t = 2 - c\approx0.75)。对于具有固定纽结类型的环,弱局域化意味着存在一个特殊的特征长度(l_{\nu}\approx N^{t_{\nu}})。在整个环的回转半径的标度(\approx N^{\nu})((\nu\approx0.58))中,这个长度决定了一个主导的幂律修正,它比无限制拓扑情况下发现的修正要强得多。通过对回转半径的大量蒙特卡罗数据的分析证实了这种修正的存在。通过在模型中为自回避多边形访问的最近邻位点引入足够强的吸引相互作用来研究塌缩状态。在这种状态下,纽结长度的确定可以基于由滑动链分隔的两个纽结环之间的熵竞争。这些测量使我们能够得出结论,每个纽结都是非局域化的((t\approx1))。