Schuch Norbert, Wolf Michael M, Verstraete Frank, Cirac J Ignacio
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany.
Phys Rev Lett. 2007 Apr 6;98(14):140506. doi: 10.1103/PhysRevLett.98.140506. Epub 2007 Apr 4.
We determine the computational power of preparing projected entangled pair states (PEPS), as well as the complexity of classically simulating them, and generally the complexity of contracting tensor networks. While creating PEPS allows us to solve PP problems, the latter two tasks are both proven to be #P-complete. We further show how PEPS can be used to approximate ground states of gapped Hamiltonians and that creating them is easier than creating arbitrary PEPS. The main tool for our proofs is a duality between PEPS and postselection which allows us to use existing results from quantum complexity.
我们确定了制备投影纠缠对态(PEPS)的计算能力,以及对其进行经典模拟的复杂度,一般来说还有张量网络收缩的复杂度。虽然创建PEPS使我们能够解决PP问题,但后两项任务都被证明是#P完全的。我们进一步展示了PEPS如何用于近似有隙哈密顿量的基态,并且创建它们比创建任意PEPS更容易。我们证明的主要工具是PEPS与后选择之间的对偶性,这使我们能够利用量子复杂度的现有结果。