Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States of America.
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States of America.
PLoS One. 2018 Dec 10;13(12):e0206704. doi: 10.1371/journal.pone.0206704. eCollection 2018.
The exploration of hybrid quantum-classical algorithms and programming models on noisy near-term quantum hardware has begun. As hybrid programs scale towards classical intractability, validation and benchmarking are critical to understanding the utility of the hybrid computational model. In this paper, we demonstrate a newly developed quantum circuit simulator based on tensor network theory that enables intermediate-scale verification and validation of hybrid quantum-classical computing frameworks and programming models. We present our tensor-network quantum virtual machine (TNQVM) simulator which stores a multi-qubit wavefunction in a compressed (factorized) form as a matrix product state, thus enabling single-node simulations of larger qubit registers, as compared to brute-force state-vector simulators. Our simulator is designed to be extensible in both the tensor network form and the classical hardware used to run the simulation (multicore, GPU, distributed). The extensibility of the TNQVM simulator with respect to the simulation hardware type is achieved via a pluggable interface for different numerical backends (e.g., ITensor and ExaTENSOR numerical libraries). We demonstrate the utility of our TNQVM quantum circuit simulator through the verification of randomized quantum circuits and the variational quantum eigensolver algorithm, both expressed within the eXtreme-scale ACCelerator (XACC) programming model.
对噪声近期量子硬件上的混合量子-经典算法和编程模型的探索已经开始。随着混合程序扩展到经典的不可行性,验证和基准测试对于理解混合计算模型的实用性至关重要。在本文中,我们展示了一种新开发的基于张量网络理论的量子电路模拟器,它能够对混合量子-经典计算框架和编程模型进行中等规模的验证和验证。我们提出了我们的张量网络量子虚拟机 (TNQVM) 模拟器,它将多量子位波函数以压缩(分解)的形式存储为矩阵乘积态,从而能够在单个节点上模拟更大的量子位寄存器,与全搜索态矢量模拟器相比。我们的模拟器旨在在张量网络形式和用于运行模拟的经典硬件(多核、GPU、分布式)方面具有可扩展性。TNQVM 模拟器在模拟硬件类型方面的可扩展性是通过不同数值后端(例如 ITensor 和 ExaTENSOR 数值库)的可插拔接口来实现的。我们通过在 eXtreme-scale ACCelerator (XACC) 编程模型中表达的随机量子电路和变分量子本征值求解器算法的验证,展示了我们的 TNQVM 量子电路模拟器的实用性。