Center for Quantum Information, IIIS, Tsinghua University, Beijing, 100084, China.
Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA.
Nat Commun. 2017 Sep 22;8(1):662. doi: 10.1038/s41467-017-00705-2.
Part of the challenge for quantum many-body problems comes from the difficulty of representing large-scale quantum states, which in general requires an exponentially large number of parameters. Neural networks provide a powerful tool to represent quantum many-body states. An important open question is what characterizes the representational power of deep and shallow neural networks, which is of fundamental interest due to the popularity of deep learning methods. Here, we give a proof that, assuming a widely believed computational complexity conjecture, a deep neural network can efficiently represent most physical states, including the ground states of many-body Hamiltonians and states generated by quantum dynamics, while a shallow network representation with a restricted Boltzmann machine cannot efficiently represent some of those states.One of the challenges in studies of quantum many-body physics is finding an efficient way to record the large system wavefunctions. Here the authors present an analysis of the capabilities of recently-proposed neural network representations for storing physically accessible quantum states.
量子多体问题的部分挑战来自于表示大规模量子态的困难,这通常需要指数级数量的参数。神经网络为表示量子多体态提供了强大的工具。一个重要的开放性问题是,什么特征刻画了深度和浅层神经网络的表示能力,由于深度学习方法的普及,这一点具有根本的意义。在这里,我们给出了一个证明,即假设一个被广泛相信的计算复杂性猜想,一个深度神经网络可以有效地表示大多数物理态,包括多体哈密顿量的基态和量子动力学产生的态,而具有受限玻尔兹曼机的浅层网络表示则不能有效地表示其中的一些态。在量子多体物理的研究中,面临的挑战之一是找到一种有效方法来记录大系统波函数。在这里,作者对最近提出的神经网络表示在存储物理上可访问的量子态方面的能力进行了分析。