Suppr超能文献

用于测量癌症对治疗反应的18F-FDG摄取定量的动态和静态方法,包括粒细胞集落刺激因子的影响。

Dynamic and static approaches to quantifying 18F-FDG uptake for measuring cancer response to therapy, including the effect of granulocyte CSF.

作者信息

Doot Robert K, Dunnwald Lisa K, Schubert Erin K, Muzi Mark, Peterson Lanell M, Kinahan Paul E, Kurland Brenda F, Mankoff David A

机构信息

Department of Bioengineering, University of Washington, Seattle, Washington, USA.

出版信息

J Nucl Med. 2007 Jun;48(6):920-5. doi: 10.2967/jnumed.106.037382. Epub 2007 May 15.

Abstract

UNLABELLED

The response of cancer to chemotherapy can be quantified using (18)F-FDG to indicate changes in tumor metabolism. Quantification using the standardized uptake value (SUV) is more feasible for clinical practice than is the metabolic rate of (18)F-FDG (MRFDG), which requires longer, dynamic scanning. The relationship between MRFDG and SUV depends in part on how each accounts for blood clearance of tracer. We tested whether chemotherapy and treatment with granulocyte colony-stimulating factor (CSF) changed the blood clearance curves and therefore affected the relationship between MRFDG and SUV.

METHODS

Thirty-nine patients with locally advanced breast cancer underwent (18)F-FDG PET before and after chemotherapy, including granulocyte CSF. The area under the curve (AUC) for blood clearance was determined before and after therapy. MRFDGs were determined by graphical analyses, whereas SUVs were calculated using the standard formula normalized by body weight. MRFDG and SUVs were compared with each other and with tumor response. Paired percentage changes in MRFDG and SUV were also divided into tertiles based on pretherapy SUV to investigate differences in the relative sensitivity of SUV changes to MRFDG changes due to baseline tumor uptake.

RESULTS

Despite a small but statistically significant 6% decrease in blood AUCs after therapy (P = 0.02), SUV and MRFDG did not differ significantly in slope (P = 0.53) or in correlation before and after therapy (r = 0.95 for both). Percentage changes in MRFDG and SUV between serial scans correlated with each other (r = 0.84) and with patient response (P <or= 0.06). The maximum detectable percentage change in SUV and the slope of percentage changes in MRFDG versus SUV for the patient tertile with the lowest baseline SUVs (65% +/- 5% [+/-SE], slope (m) = 0.40 +/- 0.12, n = 13) were significantly lower than for the other patients (86% +/- 3%, m = 0.85 +/- 0.10, n = 26, P = 0.01 for both).

CONCLUSION

Chemotherapy and granulocyte CSF treatment resulted in a lower (18)F-FDG blood AUC. The maximum detectable percentage change in (18)F-FDG uptake is less when quantifying via static SUV than via dynamic MRFDG. This effect is small in most patients but may have clinical significance for measuring the response of patients with a low pretherapy (18)F-FDG uptake.

摘要

未标注

可使用(18)F-FDG 对癌症化疗反应进行量化,以指示肿瘤代谢变化。与需要更长时间动态扫描的(18)F-FDG 代谢率(MRFDG)相比,使用标准化摄取值(SUV)进行量化在临床实践中更可行。MRFDG 与 SUV 之间的关系部分取决于各自对示踪剂血液清除的计算方式。我们测试了化疗和粒细胞集落刺激因子(CSF)治疗是否会改变血液清除曲线,从而影响 MRFDG 与 SUV 之间的关系。

方法

39 例局部晚期乳腺癌患者在化疗(包括粒细胞 CSF)前后接受了(18)F-FDG PET 检查。测定治疗前后血液清除的曲线下面积(AUC)。通过图形分析确定 MRFDG,而 SUV 使用按体重标准化的标准公式计算。将 MRFDG 和 SUV 相互比较,并与肿瘤反应进行比较。根据治疗前的 SUV 将 MRFDG 和 SUV 的配对百分比变化也分为三分位数,以研究由于基线肿瘤摄取导致的 SUV 变化相对于 MRFDG 变化的相对敏感性差异。

结果

尽管治疗后血液 AUC 有小幅但具有统计学意义的 6%下降(P = 0.02),但 SUV 和 MRFDG 在斜率(P = 0.53)或治疗前后的相关性方面无显著差异(两者 r = 0.95)。连续扫描之间 MRFDG 和 SUV 的百分比变化相互相关(r = 0.84),并与患者反应相关(P≤0.06)。基线 SUV 最低的患者三分位数中,SUV 的最大可检测百分比变化以及 MRFDG 相对于 SUV 的百分比变化斜率(65%±5%[±标准误],斜率(m)= 0.40±0.12,n = 13)显著低于其他患者(86%±3%,m = 0.85±0.10,n = 26,两者 P = 0.01)。

结论

化疗和粒细胞 CSF 治疗导致(18)F-FDG 血液 AUC 降低。通过静态 SUV 进行量化时,(18)F-FDG 摄取的最大可检测百分比变化小于通过动态 MRFDG 进行量化时。这种影响在大多数患者中较小,但对于测量治疗前(18)F-FDG 摄取较低的患者的反应可能具有临床意义。

相似文献

4
Measuring [(18)F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods.
Eur J Nucl Med Mol Imaging. 2003 May;30(5):674-81. doi: 10.1007/s00259-003-1127-z. Epub 2003 Mar 15.
9
Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET.
J Nucl Med. 2008 Jun;49(6):892-8. doi: 10.2967/jnumed.107.049585. Epub 2008 May 15.

引用本文的文献

1
Dual-phase multiobjective Bayesian optimization method for estimating hepatocellular carcinoma dynamics parameters from PET/CT scans.
Quant Imaging Med Surg. 2025 Aug 1;15(8):6654-6666. doi: 10.21037/qims-2024-2767. Epub 2025 Jul 29.
2
Can Dynamic Whole-Body FDG PET Imaging Differentiate between Malignant and Inflammatory Lesions?
Life (Basel). 2022 Aug 30;12(9):1350. doi: 10.3390/life12091350.
3
Principles of Tracer Kinetic Analysis in Oncology, Part II: Examples and Future Directions.
J Nucl Med. 2022 Apr;63(4):514-521. doi: 10.2967/jnumed.121.263519.
4
Principles of Tracer Kinetic Analysis in Oncology, Part I: Principles and Overview of Methodology.
J Nucl Med. 2022 Mar;63(3):342-352. doi: 10.2967/jnumed.121.263518.
6
Cortical Activity During an Attack of Ménière's Disease-A Case Report.
Front Neurol. 2021 Jul 22;12:669390. doi: 10.3389/fneur.2021.669390. eCollection 2021.
7
Update on Quantitative Imaging for Predicting and Assessing Response in Oncology.
Semin Nucl Med. 2020 Nov;50(6):505-517. doi: 10.1053/j.semnuclmed.2020.07.002. Epub 2020 Jul 25.
10
Dynamic FDG-PET/CT in the Initial Staging of Primary Breast Cancer: Clinicopathological Correlations.
Pathol Oncol Res. 2020 Apr;26(2):997-1006. doi: 10.1007/s12253-019-00641-0. Epub 2019 Apr 3.

本文引用的文献

1
Monitoring primary breast cancer throughout chemotherapy using FDG-PET.
Breast Cancer Res Treat. 2007 Mar;102(1):75-84. doi: 10.1007/s10549-006-9316-7. Epub 2006 Aug 9.
2
How should we analyse FDG PET studies for monitoring tumour response?
Eur J Nucl Med Mol Imaging. 2006 Jul;33 Suppl 1:16-21. doi: 10.1007/s00259-006-0131-5.
5
Monitoring chemotherapy and radiotherapy of solid tumors.
Eur J Nucl Med Mol Imaging. 2006 Jul;33 Suppl 1:27-37. doi: 10.1007/s00259-006-0133-3.
8
Quantitative positron emission tomography imaging to measure tumor response to therapy: what is the best method?
Mol Imaging Biol. 2003 Sep-Oct;5(5):281-5. doi: 10.1016/j.mibio.2003.09.002.
10
Measuring [(18)F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods.
Eur J Nucl Med Mol Imaging. 2003 May;30(5):674-81. doi: 10.1007/s00259-003-1127-z. Epub 2003 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验