Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and.
J Nucl Med. 2022 Mar;63(3):342-352. doi: 10.2967/jnumed.121.263518.
On successful completion of this activity, participants should be able to describe (1) describe principles of PET tracer kinetic analysis for oncologic applications; (2) list methods used for PET kinetic analysis for oncology; and (3) discuss application of kinetic modeling for cancer-specific diagnostic needs. This work was supported by KL2 TR001879, R01 CA211337, R01 CA113941, R33 CA225310, Komen SAC130060, R50 CA211270, and K01 DA040023. Dr. Pantel is a consultant or advisor for Progenics and Blue Earth Diagnostics and is a meeting participant or lecturer for Blue Earth Diagnostics. Dr. Mankoff is on the scientific advisory boards of GE Healthcare, Philips Healthcare, Reflexion, and ImaginAb and is the owner of Trevarx; his wife is the chief executive officer of Trevarx. The authors of this article have indicated no other relevant relationships that could be perceived as a real or apparent conflict of interest. SNMMI is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing education for physicians. SNMMI designates each continuing education article for a maximum of 2.0 AMA PRA Category 1 Credits. Physicians should claim only credit commensurate with the extent of their participation in the activity. For CE credit, SAM, and other credit types, participants can access this activity through the SNMMI website (http://www.snmmilearningcenter.org) through March 2025PET enables noninvasive imaging of regional in vivo cancer biology. By engineering a radiotracer to target specific biologic processes of relevance to cancer (e.g., cancer metabolism, blood flow, proliferation, and tumor receptor expression or ligand binding), PET can detect cancer spread, characterize the cancer phenotype, and assess its response to treatment. For example, imaging of glucose metabolism using the radiolabeled glucose analog F-FDG has widespread applications to all 3 of these tasks and plays an important role in cancer care. However, the current clinical practice of imaging at a single time point remote from tracer injection (i.e., static imaging) does not use all the information that PET cancer imaging can provide, especially to address questions beyond cancer detection. Reliance on tracer measures obtained only from static imaging may also lead to misleading results. In this 2-part continuing education paper, we describe the principles of tracer kinetic analysis for oncologic PET (part 1), followed by examples of specific implementations of kinetic analysis for cancer PET imaging that highlight the added benefits over static imaging (part 2). This review is designed to introduce nuclear medicine clinicians to basic concepts of kinetic analysis in oncologic imaging, with a goal of illustrating how kinetic analysis can augment our understanding of in vivo cancer biology, improve our approach to clinical decision making, and guide the interpretation of quantitative measures derived from static images.
在成功完成此活动后,参与者应能够:(1)描述用于肿瘤学应用的 PET 示踪剂动力学分析原理;(2)列出用于肿瘤学 PET 动力学分析的方法;(3)讨论用于癌症特定诊断需求的动力学建模的应用。这项工作得到了 KL2 TR001879、R01 CA211337、R01 CA113941、R33 CA225310、Komen SAC130060、R50 CA211270 和 K01 DA040023 的支持。潘特尔博士是 Progenics 和 Blue Earth Diagnostics 的顾问或顾问,并且是 Blue Earth Diagnostics 的会议参与者或讲师。曼考夫博士是通用电气医疗保健、飞利浦医疗保健、Reflexion 和 ImaginAb 的科学顾问委员会成员,也是 Trevarx 的所有者;他的妻子是 Trevarx 的首席执行官。本文作者表示,没有其他可能被视为实际或明显利益冲突的相关关系。核医学与分子影像学会 (SNMMI) 经继续教育委员会 (ACCME) 认证,可为医生提供继续教育。SNMMI 将每个继续教育文章最多指定为 2.0 个 AMA PRA 类别 1 学分。医师应仅要求与其参与活动的程度相称的学分。对于 CE 学分、SAM 和其他类型的学分,参与者可以通过 SNMMI 网站 (http://www.snmmilearningcenter.org) 访问此活动,截至 2025 年 3 月。
PET 能够对体内癌症生物学进行非侵入性成像。通过设计一种放射性示踪剂来靶向与癌症相关的特定生物学过程(例如癌症代谢、血流、增殖以及肿瘤受体表达或配体结合),PET 可以检测癌症的扩散、表征癌症表型并评估其对治疗的反应。例如,使用放射性标记的葡萄糖类似物 F-FDG 对葡萄糖代谢进行成像已广泛应用于这三个任务,并且在癌症护理中发挥着重要作用。然而,目前从示踪剂注射远处进行的单次时间点成像(即静态成像)的临床实践并没有利用 PET 癌症成像可以提供的所有信息,特别是对于解决癌症检测以外的问题。仅依赖于从静态成像获得的示踪剂测量值也可能导致误导性结果。在本继续教育论文的两部分中,我们描述了用于肿瘤学 PET 的示踪剂动力学分析的原理(第 1 部分),随后介绍了用于癌症 PET 成像的动力学分析的具体实现示例,这些示例突出了与静态成像相比的附加优势(第 2 部分)。本综述旨在向核医学临床医生介绍肿瘤成像中动力学分析的基本概念,目标是说明动力学分析如何增强我们对体内癌症生物学的理解,改善我们的临床决策方法,并指导从静态图像得出的定量测量值的解释。