Suppr超能文献

基于大分子相互作用的最小且自洽的计算机细胞模型。

A minimal and self-consistent in silico cell model based on macromolecular interactions.

作者信息

Flamm Christoph, Endler Lukas, Müller Stefan, Widder Stefanie, Schuster Peter

机构信息

Theoretical Biochemistry Group, Institut für Theoretische Chemie, Universität Wien, Währingerstrasse 17, 1090 Wien, Austria.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2007 Oct 29;362(1486):1831-9. doi: 10.1098/rstb.2007.2075.

Abstract

A self-consistent minimal cell model with a physically motivated schema for molecular interaction is introduced and described. The genetic and metabolic reaction network of the cell is modelled by multidimensional nonlinear ordinary differential equations, which are derived from biochemical kinetics. The strategy behind this modelling approach is to keep the model sufficiently simple in order to be able to perform studies on evolutionary optimization in populations of cells. At the same time, the model should be complex enough to handle the basic features of genetic control of metabolism and coupling to environmental factors. Thereby, the model system will provide insight into the mechanisms leading to important biological phenomena, such as homeostasis, (circadian) rhythms, robustness and adaptation to a changing environment. One example of modelling a molecular regulatory mechanism, cooperative binding of transcription factors, is discussed in detail.

摘要

本文介绍并描述了一个自洽的最小细胞模型,该模型具有基于物理动机的分子相互作用模式。细胞的遗传和代谢反应网络由多维非线性常微分方程建模,这些方程源自生化动力学。这种建模方法背后的策略是保持模型足够简单,以便能够对细胞群体中的进化优化进行研究。同时,模型应足够复杂,以处理代谢遗传控制和与环境因素耦合的基本特征。因此,该模型系统将深入了解导致重要生物现象的机制,如稳态、(昼夜)节律、稳健性和对变化环境的适应性。详细讨论了一个分子调节机制建模的例子,即转录因子的协同结合。

相似文献

2
In silico simulation of biological network dynamics.生物网络动力学的计算机模拟
Nat Biotechnol. 2004 Aug;22(8):1017-9. doi: 10.1038/nbt991. Epub 2004 Jul 4.
4
Automatic network coupling analysis for dynamical systems based on detailed kinetic models.基于详细动力学模型的动力系统自动网络耦合分析
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041911. doi: 10.1103/PhysRevE.72.041911. Epub 2005 Oct 12.
5
Evolutionary self-organization in complex fluids.复杂流体中的进化自组织
Philos Trans R Soc Lond B Biol Sci. 2007 Oct 29;362(1486):1763-79. doi: 10.1098/rstb.2007.2069.
6
Macromolecular intelligence in microorganisms.微生物中的大分子智能
Biol Chem. 2000 Sep-Oct;381(9-10):965-72. doi: 10.1515/BC.2000.119.
9
Evolution of weak cooperative interactions for biological specificity.生物特异性的弱协同相互作用的进化。
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):E11053-E11060. doi: 10.1073/pnas.1815912115. Epub 2018 Nov 7.
10
Emergent criticality from coevolution in random Boolean networks.随机布尔网络中协同进化产生的紧急临界性
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Oct;74(4 Pt 1):041910. doi: 10.1103/PhysRevE.74.041910. Epub 2006 Oct 17.

本文引用的文献

4
A taxonomy for artificial embryogeny.人工胚胎发生的分类法。
Artif Life. 2003 Spring;9(2):93-130. doi: 10.1162/106454603322221487.
6
Modelling 'evo-devo' with RNA.用RNA对“进化发育生物学”进行建模。
Bioessays. 2002 Dec;24(12):1164-77. doi: 10.1002/bies.10190.
10
Continuity in evolution: on the nature of transitions.进化的连续性:论转变的本质。
Science. 1998 May 29;280(5368):1451-5. doi: 10.1126/science.280.5368.1451.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验