Suppr超能文献

染色质重塑因子和Nap1在核小体解聚中的全基因组作用。

A genome-wide role for CHD remodelling factors and Nap1 in nucleosome disassembly.

作者信息

Walfridsson Julian, Khorosjutina Olga, Matikainen Paulina, Gustafsson Claes M, Ekwall Karl

机构信息

Karolinska Institutet, Department of Biosciences and Medical Nutrition/School of Life Sciences, University College Sodertorn, Alfred Nobel's Allé 7, 141 89 Huddinge, Sweden.

出版信息

EMBO J. 2007 Jun 20;26(12):2868-79. doi: 10.1038/sj.emboj.7601728. Epub 2007 May 17.

Abstract

Chromatin remodelling factors and histone chaperones were previously shown to cooperatively affect nucleosome assembly and disassembly processes in vitro. Here, we show that Schizosaccharomyces pombe CHD remodellers, the Hrp1 and Hrp3 paralogs physically interact with the histone chaperone Nap1. Genome-wide analysis of Hrp1, Hrp3 and Nap1 occupancy, combined with nucleosome density measurements revealed that the CHD factors and Nap1 colocalized in particular to promoter regions where they remove nucleosomes near the transcriptional start site. Hrp1 and Hrp3 also regulate nucleosome density in coding regions, where they have redundant roles to stimulate transcription. Previously, DNA replication-dependent and -independent nucleosome disassembly processes have been described. We found that nucleosome density increased in the hrp1 mutant in the absence of DNA replication. Finally, regions where nucleosome density increased in hrp1, hrp3 and nap1 mutants also showed nucleosome density and histone modification changes in HDAC and HAT mutants. Thus, this study revealed an important in vivo role for CHD remodellers and Nap1 in nucleosome disassembly at promoters and coding regions, which are linked to changes in histone acetylation.

摘要

染色质重塑因子和组蛋白伴侣先前已被证明在体外协同影响核小体的组装和拆卸过程。在此,我们表明粟酒裂殖酵母CHD重塑因子Hrp1和Hrp3旁系同源物与组蛋白伴侣Nap1发生物理相互作用。对Hrp1、Hrp3和Nap1占据情况进行全基因组分析,并结合核小体密度测量结果显示,CHD因子和Nap1特别共定位于启动子区域,在那里它们去除转录起始位点附近的核小体。Hrp1和Hrp3还调节编码区域的核小体密度,在这些区域它们具有刺激转录的冗余作用。此前,已描述了依赖DNA复制和不依赖DNA复制的核小体拆卸过程。我们发现,在没有DNA复制的情况下,hrp1突变体中的核小体密度增加。最后,在hrp1、hrp3和nap1突变体中核小体密度增加的区域,在HDAC和HAT突变体中也显示出核小体密度和组蛋白修饰的变化。因此,本研究揭示了CHD重塑因子和Nap1在启动子和编码区域的核小体拆卸中在体内的重要作用,这与组蛋白乙酰化的变化有关。

相似文献

1
A genome-wide role for CHD remodelling factors and Nap1 in nucleosome disassembly.
EMBO J. 2007 Jun 20;26(12):2868-79. doi: 10.1038/sj.emboj.7601728. Epub 2007 May 17.
2
Genome-wide mapping of nucleosome positions in Schizosaccharomyces pombe.
Methods. 2009 Jul;48(3):218-25. doi: 10.1016/j.ymeth.2009.02.004. Epub 2009 Feb 20.
3
New nuclear partners for nucleosome assembly protein 1: unexpected associations.
Biochem Cell Biol. 2010 Dec;88(6):927-36. doi: 10.1139/O10-115.
4
Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling.
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18385-90. doi: 10.1073/pnas.0507975102. Epub 2005 Dec 12.
5
The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization.
Mol Microbiol. 2006 Mar;59(5):1531-41. doi: 10.1111/j.1365-2958.2005.05031.x.
6
The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres.
Nucleic Acids Res. 2005 May 20;33(9):2868-79. doi: 10.1093/nar/gki579. Print 2005.
7
Genome-wide map of nucleosome acetylation and methylation in yeast.
Cell. 2005 Aug 26;122(4):517-27. doi: 10.1016/j.cell.2005.06.026.
8
Chromatin remodelling at promoters suppresses antisense transcription.
Nature. 2007 Dec 13;450(7172):1031-5. doi: 10.1038/nature06391.
10
Dynamics of replication-independent histone turnover in budding yeast.
Science. 2007 Mar 9;315(5817):1405-8. doi: 10.1126/science.1134053.

引用本文的文献

1
5
Meiosis initiation: a story of two sexes in all creatures great and small.
Biochem J. 2021 Oct 29;478(20):3791-3805. doi: 10.1042/BCJ20210412.
6
Non-Coding RNAs and Nucleosome Remodeling Complexes: An Intricate Regulatory Relationship.
Biology (Basel). 2020 Aug 7;9(8):213. doi: 10.3390/biology9080213.
9
Physiological Roles of DNA Double-Strand Breaks.
J Nucleic Acids. 2017;2017:6439169. doi: 10.1155/2017/6439169. Epub 2017 Oct 18.
10
Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness.
EMBO Rep. 2016 Nov;17(11):1609-1623. doi: 10.15252/embr.201642352. Epub 2016 Sep 5.

本文引用的文献

2
RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation.
Mol Cell. 2006 Nov 3;24(3):481-7. doi: 10.1016/j.molcel.2006.09.012.
3
Genome-wide patterns of histone modifications in fission yeast.
Chromosome Res. 2006;14(1):95-105. doi: 10.1007/s10577-005-1023-4.
4
Chromatin remodeling by nucleosome disassembly in vitro.
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3090-3. doi: 10.1073/pnas.0511050103. Epub 2006 Feb 21.
5
Dynamic regulation of replication independent deposition of histone H3 in fission yeast.
Nucleic Acids Res. 2005 Dec 15;33(22):7102-10. doi: 10.1093/nar/gki1011. Print 2005.
6
Assembly and disassembly of nucleosome core particles containing histone variants by human nucleosome assembly protein I.
Mol Cell Biol. 2005 Dec;25(23):10639-51. doi: 10.1128/MCB.25.23.10639-10651.2005.
7
dMi-2 chromatin binding and remodeling activities are regulated by dCK2 phosphorylation.
J Biol Chem. 2005 Dec 23;280(51):41912-20. doi: 10.1074/jbc.M507084200. Epub 2005 Oct 13.
9
Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast.
EMBO J. 2005 Aug 17;24(16):2906-18. doi: 10.1038/sj.emboj.7600758. Epub 2005 Aug 4.
10
Interacting proteins and differences in nuclear transport reveal specific functions for the NAP1 family proteins in plants.
Plant Physiol. 2005 Jul;138(3):1446-56. doi: 10.1104/pp.105.060509. Epub 2005 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验