Suppr超能文献

使用代谢组数据通过混合动态/静态方法区分酶。

Distinguishing enzymes using metabolome data for the hybrid dynamic/static method.

作者信息

Ishii Nobuyoshi, Nakayama Yoichi, Tomita Masaru

机构信息

Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.

出版信息

Theor Biol Med Model. 2007 May 20;4:19. doi: 10.1186/1742-4682-4-19.

Abstract

BACKGROUND

In the process of constructing a dynamic model of a metabolic pathway, a large number of parameters such as kinetic constants and initial metabolite concentrations are required. However, in many cases, experimental determination of these parameters is time-consuming. Therefore, for large-scale modelling, it is essential to develop a method that requires few experimental parameters. The hybrid dynamic/static (HDS) method is a combination of the conventional kinetic representation and metabolic flux analysis (MFA). Since no kinetic information is required in the static module, which consists of MFA, the HDS method may dramatically reduce the number of required parameters. However, no adequate method for developing a hybrid model from experimental data has been proposed.

RESULTS

In this study, we develop a method for constructing hybrid models based on metabolome data. The method discriminates enzymes into static modules and dynamic modules using metabolite concentration time series data. Enzyme reaction rate time series were estimated from the metabolite concentration time series data and used to distinguish enzymes optimally for the dynamic and static modules. The method was applied to build hybrid models of two microbial central-carbon metabolism systems using simulation results from their dynamic models.

CONCLUSION

A protocol to build a hybrid model using metabolome data and a minimal number of kinetic parameters has been developed. The proposed method was successfully applied to the strictly regulated central-carbon metabolism system, demonstrating the practical use of the HDS method, which is designed for computer modelling of metabolic systems.

摘要

背景

在构建代谢途径动态模型的过程中,需要大量参数,如动力学常数和初始代谢物浓度。然而,在许多情况下,通过实验确定这些参数非常耗时。因此,对于大规模建模而言,开发一种所需实验参数较少的方法至关重要。混合动态/静态(HDS)方法是传统动力学表示法与代谢通量分析(MFA)的结合。由于由MFA组成的静态模块不需要动力学信息,HDS方法可能会显著减少所需参数的数量。然而,尚未提出一种从实验数据开发混合模型的适当方法。

结果

在本研究中,我们开发了一种基于代谢组学数据构建混合模型的方法。该方法利用代谢物浓度时间序列数据将酶区分为静态模块和动态模块。从代谢物浓度时间序列数据估计酶反应速率时间序列,并用于为动态和静态模块最佳地区分酶。该方法应用于利用两个微生物中心碳代谢系统动态模型的模拟结果构建混合模型。

结论

已开发出一种使用代谢组学数据和最少数量动力学参数构建混合模型的方案。所提出的方法成功应用于严格调控的中心碳代谢系统,证明了专为代谢系统计算机建模设计的HDS方法的实际用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验