Goel Gautam, Chou I-Chun, Voit Eberhard O
Integrative BioSystems Institute and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA.
Bioinformatics. 2008 Nov 1;24(21):2505-11. doi: 10.1093/bioinformatics/btn470. Epub 2008 Sep 4.
At the center of computational systems biology are mathematical models that capture the dynamics of biological systems and offer novel insights. The bottleneck in the construction of these models is presently the identification of model parameters that make the model consistent with observed data. Dynamic flux estimation (DFE) is a novel methodological framework for estimating parameters for models of metabolic systems from time-series data. DFE consists of two distinct phases, an entirely model-free and assumption-free data analysis and a model-based mathematical characterization of process representations. The model-free phase reveals inconsistencies within the data, and between data and the alleged system topology, while the model-based phase allows quantitative diagnostics of whether--or to what degree--the assumed mathematical formulations are appropriate or in need of improvement. Hallmarks of DFE are the facility to: diagnose data and model consistency; circumvent undue compensation of errors; determine functional representations of fluxes uncontaminated by errors in other fluxes and pinpoint sources of remaining errors. Our results suggest that the proposed approach is more effective and robust than presently available methods for deriving metabolic models from time-series data. Its avoidance of error compensation among process descriptions promises significantly improved extrapolability toward new data or experimental conditions.
计算系统生物学的核心是数学模型,这些模型能够捕捉生物系统的动态变化并提供新颖的见解。目前,构建这些模型的瓶颈在于识别使模型与观测数据一致的模型参数。动态通量估计(DFE)是一种用于从时间序列数据估计代谢系统模型参数的新颖方法框架。DFE由两个不同的阶段组成,一个完全无模型且无假设的数据分析阶段,以及一个基于模型的过程表示数学表征阶段。无模型阶段揭示数据内部以及数据与所谓系统拓扑之间的不一致性,而基于模型的阶段则允许对假设的数学公式是否合适或是否需要改进进行定量诊断。DFE的特点包括能够:诊断数据和模型的一致性;避免过度的误差补偿;确定未受其他通量误差污染的通量函数表示,并查明剩余误差的来源。我们的结果表明,所提出的方法比目前从时间序列数据推导代谢模型的可用方法更有效、更稳健。它在过程描述中避免误差补偿,有望显著提高对新数据或实验条件的外推能力。