Suppr超能文献

iSCHRUNK——用于表征和降低基因组规模代谢网络动力学模型不确定性的计算机模拟方法。

iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.

作者信息

Andreozzi Stefano, Miskovic Ljubisa, Hatzimanikatis Vassily

机构信息

Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, CH-1015, Switzerland.

Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, CH-1015, Switzerland.

出版信息

Metab Eng. 2016 Jan;33:158-168. doi: 10.1016/j.ymben.2015.10.002. Epub 2015 Oct 22.

Abstract

Accurate determination of physiological states of cellular metabolism requires detailed information about metabolic fluxes, metabolite concentrations and distribution of enzyme states. Integration of fluxomics and metabolomics data, and thermodynamics-based metabolic flux analysis contribute to improved understanding of steady-state properties of metabolism. However, knowledge about kinetics and enzyme activities though essential for quantitative understanding of metabolic dynamics remains scarce and involves uncertainty. Here, we present a computational methodology that allow us to determine and quantify the kinetic parameters that correspond to a certain physiology as it is described by a given metabolic flux profile and a given metabolite concentration vector. Though we initially determine kinetic parameters that involve a high degree of uncertainty, through the use of kinetic modeling and machine learning principles we are able to obtain more accurate ranges of kinetic parameters, and hence we are able to reduce the uncertainty in the model analysis. We computed the distribution of kinetic parameters for glucose-fed E. coli producing 1,4-butanediol and we discovered that the observed physiological state corresponds to a narrow range of kinetic parameters of only a few enzymes, whereas the kinetic parameters of other enzymes can vary widely. Furthermore, this analysis suggests which are the enzymes that should be manipulated in order to engineer the reference state of the cell in a desired way. The proposed approach also sets up the foundations of a novel type of approaches for efficient, non-asymptotic, uniform sampling of solution spaces.

摘要

准确确定细胞代谢的生理状态需要有关代谢通量、代谢物浓度和酶状态分布的详细信息。通量组学和代谢组学数据的整合以及基于热力学的代谢通量分析有助于更好地理解代谢的稳态特性。然而,尽管关于动力学和酶活性的知识对于定量理解代谢动力学至关重要,但仍然稀缺且存在不确定性。在这里,我们提出了一种计算方法,该方法使我们能够确定和量化与特定生理状态相对应的动力学参数,这种生理状态由给定的代谢通量分布和给定的代谢物浓度向量描述。尽管我们最初确定的动力学参数存在高度不确定性,但通过使用动力学建模和机器学习原理,我们能够获得更准确的动力学参数范围,从而能够减少模型分析中的不确定性。我们计算了以葡萄糖为食产生1,4-丁二醇的大肠杆菌的动力学参数分布,发现观察到的生理状态对应于仅少数几种酶的狭窄动力学参数范围,而其他酶的动力学参数可以有很大变化。此外,该分析表明为了以期望的方式改造细胞的参考状态应该操纵哪些酶。所提出的方法还为有效、非渐近、均匀采样解空间的新型方法奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验