Suppr超能文献

一种多平面治疗计划框架:调强放射治疗的范式转变。

A multiplan treatment-planning framework: a paradigm shift for intensity-modulated radiotherapy.

作者信息

Meyer Robert R, Zhang Hao H, Goadrich Laura, Nazareth Daryl P, Shi Leyuan, D'Souza Warren D

机构信息

Computer Sciences Department, University of Wisconsin, Madison, WI, USA.

出版信息

Int J Radiat Oncol Biol Phys. 2007 Jul 15;68(4):1178-89. doi: 10.1016/j.ijrobp.2007.02.051. Epub 2007 May 23.

Abstract

PURPOSE

To describe a multiplan intensity-modulated radiotherapy (IMRT) planning framework, and to describe a decision support system (DSS) for ranking multiple plans and modeling the planning surface.

METHODS AND MATERIALS

One hundred twenty-five plans were generated sequentially for a head-and-neck case and a pelvic case by varying the dose-volume constraints on each of the organs at risk (OARs). A DSS was used to rank plans according to dose-volume histogram (DVH) values, as well as equivalent uniform dose (EUD) values. Two methods for ranking treatment plans were evaluated: composite criteria and pre-emptive selection. The planning surface determined by the results was modeled using quadratic functions.

RESULTS

The DSS provided an easy-to-use interface for the comparison of multiple plan features. Plan ranking resulted in the identification of one to three "optimal" plans. The planning surface models had good predictive capability with respect to both DVH values and EUD values and generally, errors of <6%. Models generated by minimizing the maximum relative error had significantly lower relative errors than models obtained by minimizing the sum of squared errors. Using the quadratic model, plan properties for one OAR were determined as a function of the other OAR constraint settings. The modeled plan surface can then be used to understand the interdependence of competing planning objectives.

CONCLUSION

The DSS can be used to aid the planner in the selection of the most desirable plan. The collection of quadratic models constructed from the plan data to predict DVH and EUD values generally showed excellent agreement with the actual plan values.

摘要

目的

描述一种多平面调强放射治疗(IMRT)计划框架,并描述一种用于对多个计划进行排序和对计划表面进行建模的决策支持系统(DSS)。

方法和材料

通过改变每个危及器官(OAR)的剂量体积约束,依次为一例头颈病例和一例盆腔病例生成125个计划。使用DSS根据剂量体积直方图(DVH)值以及等效均匀剂量(EUD)值对计划进行排序。评估了两种对治疗计划进行排序的方法:综合标准和优先选择。使用二次函数对由结果确定的计划表面进行建模。

结果

DSS提供了一个易于使用的界面,用于比较多个计划特征。计划排序导致识别出一到三个“最优”计划。计划表面模型对DVH值和EUD值都具有良好的预测能力,一般误差<6%。通过最小化最大相对误差生成的模型的相对误差明显低于通过最小化平方和误差获得的模型。使用二次模型,一个OAR的计划属性被确定为其他OAR约束设置的函数。然后,建模的计划表面可用于理解相互竞争的计划目标之间的相互依存关系。

结论

DSS可用于帮助计划者选择最理想的计划。从计划数据构建的用于预测DVH和EUD值的二次模型集合通常与实际计划值显示出极好的一致性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验