Suppr超能文献

预测 IMRT 计划中危及器官剂量-体积水平和与计划相关的并发症的最小知识库。

The minimum knowledge base for predicting organ-at-risk dose-volume levels and plan-related complications in IMRT planning.

机构信息

Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.

出版信息

Phys Med Biol. 2010 Apr 7;55(7):1935-47. doi: 10.1088/0031-9155/55/7/010. Epub 2010 Mar 12.

Abstract

IMRT treatment planning requires consideration of two competing objectives: achieving the required amount of radiation for the planning target volume and minimizing the amount of radiation delivered to all other tissues. It is important for planners to understand the tradeoff between competing factors so that the time-consuming human interaction loop (plan-evaluate-modify) can be eliminated. Treatment-plan-surface models have been proposed as a decision support tool to aid treatment planners and clinicians in choosing between rival treatment plans in a multi-plan environment. In this paper, an empirical approach is introduced to determine the minimum number of treatment plans (minimum knowledge base) required to build accurate representations of the IMRT plan surface in order to predict organ-at-risk (OAR) dose-volume (DV) levels and complications as a function of input DV constraint settings corresponding to all involved OARs in the plan. We have tested our approach on five head and neck patients and five whole pelvis/prostate patients. Our results suggest that approximately 30 plans were sufficient to predict DV levels with less than 3% relative error in both head and neck and whole pelvis/prostate cases. In addition, approximately 30-60 plans were sufficient to predict saliva flow rate with less than 2% relative error and to classify rectal bleeding with an accuracy of 90%.

摘要

调强适形放疗(IMRT)治疗计划需要考虑两个相互竞争的目标:达到计划靶区所需的辐射量,以及尽量减少对所有其他组织的辐射量。对于规划者来说,了解竞争因素之间的权衡是很重要的,这样可以避免耗时的人机交互循环(计划-评估-修改)。治疗计划表面模型已被提议作为一种决策支持工具,以帮助治疗计划者和临床医生在多计划环境中选择有竞争力的治疗计划。在本文中,引入了一种经验方法来确定构建准确的调强适形放疗计划表面表示所需的最小治疗计划数量(最小知识库),以便根据与计划中所有涉及的器官相关的输入剂量体积(DV)约束设置来预测危及器官(OAR)剂量体积(DV)水平和并发症。我们已经在五名头颈部患者和五名全骨盆/前列腺患者上测试了我们的方法。我们的结果表明,在头颈部和全骨盆/前列腺病例中,大约 30 个计划足以预测 DV 水平,相对误差小于 3%。此外,大约 30-60 个计划足以预测唾液流量,相对误差小于 2%,并以 90%的准确率分类直肠出血。

相似文献

1
The minimum knowledge base for predicting organ-at-risk dose-volume levels and plan-related complications in IMRT planning.
Phys Med Biol. 2010 Apr 7;55(7):1935-47. doi: 10.1088/0031-9155/55/7/010. Epub 2010 Mar 12.
3
Modeling plan-related clinical complications using machine learning tools in a multiplan IMRT framework.
Int J Radiat Oncol Biol Phys. 2009 Aug 1;74(5):1617-26. doi: 10.1016/j.ijrobp.2009.02.065.
4
Predicting dose-volume histograms for organs-at-risk in IMRT planning.
Med Phys. 2012 Dec;39(12):7446-61. doi: 10.1118/1.4761864.
5
Improved critical structure sparing with biologically based IMRT optimization.
Med Phys. 2009 May;36(5):1790-9. doi: 10.1118/1.3116775.
6
Significant improvement in normal tissue sparing and target coverage for head and neck cancer by means of helical tomotherapy.
Radiother Oncol. 2006 Mar;78(3):276-82. doi: 10.1016/j.radonc.2006.02.009. Epub 2006 Mar 20.
7
Intensity-modulated radiotherapy optimization with gEUD-guided dose-volume objectives.
Phys Med Biol. 2003 Feb 7;48(3):279-91. doi: 10.1088/0031-9155/48/3/301.
8
A fixed-jaw method to protect critical organs during intensity-modulated radiotherapy.
Med Dosim. 2014 Winter;39(4):325-9. doi: 10.1016/j.meddos.2014.05.006. Epub 2014 Jul 30.
9
Improving IMRT delivery efficiency using intensity limits during inverse planning.
Med Phys. 2005 May;32(5):1234-45. doi: 10.1118/1.1895545.
10
2-Step IMAT and 2-Step IMRT: a geometrical approach.
Med Phys. 2005 Mar;32(3):777-85. doi: 10.1118/1.1861161.

引用本文的文献

2
A personalized DVH prediction model for HDR brachytherapy in cervical cancer treatment.
Front Oncol. 2022 Aug 30;12:967436. doi: 10.3389/fonc.2022.967436. eCollection 2022.
3
Data-Driven Dose-Volume Histogram Prediction.
Adv Radiat Oncol. 2021 Oct 27;7(2):100841. doi: 10.1016/j.adro.2021.100841. eCollection 2022 Mar-Apr.
5
Knowledge-based radiation treatment planning: A data-driven method survey.
J Appl Clin Med Phys. 2021 Aug;22(8):16-44. doi: 10.1002/acm2.13337. Epub 2021 Jul 7.
6
Prescription Value-Based Automatic Optimization of Importance Factors in Inverse Planning.
Technol Cancer Res Treat. 2019 Jan-Dec;18:1533033819892259. doi: 10.1177/1533033819892259.
7
Automation in intensity modulated radiotherapy treatment planning-a review of recent innovations.
Br J Radiol. 2018 Dec;91(1092):20180270. doi: 10.1259/bjr.20180270. Epub 2018 Sep 4.
8
[Multimodal laryngeal preservation: current data-based opinion].
HNO. 2012 Jan;60(1):19-31. doi: 10.1007/s00106-011-2416-7.

本文引用的文献

1
Modeling plan-related clinical complications using machine learning tools in a multiplan IMRT framework.
Int J Radiat Oncol Biol Phys. 2009 Aug 1;74(5):1617-26. doi: 10.1016/j.ijrobp.2009.02.065.
3
Integral dose conservation in radiotherapy.
Med Phys. 2009 Mar;36(3):734-40. doi: 10.1118/1.3070585.
4
How many plans are needed in an IMRT multi-objective plan database?
Phys Med Biol. 2008 Jun 7;53(11):2785-96. doi: 10.1088/0031-9155/53/11/002. Epub 2008 May 1.
5
An approach for practical multiobjective IMRT treatment planning.
Int J Radiat Oncol Biol Phys. 2007 Dec 1;69(5):1600-7. doi: 10.1016/j.ijrobp.2007.08.019. Epub 2007 Oct 24.
6
A multiplan treatment-planning framework: a paradigm shift for intensity-modulated radiotherapy.
Int J Radiat Oncol Biol Phys. 2007 Jul 15;68(4):1178-89. doi: 10.1016/j.ijrobp.2007.02.051. Epub 2007 May 23.
8
Choosing an intensity-modulated radiation therapy technique in the treatment of head-and-neck cancer.
Int J Radiat Oncol Biol Phys. 2007 Aug 1;68(5):1299-309. doi: 10.1016/j.ijrobp.2006.11.019. Epub 2007 Jan 22.
9
Derivative-free generation and interpolation of convex Pareto optimal IMRT plans.
Phys Med Biol. 2006 Dec 21;51(24):6349-69. doi: 10.1088/0031-9155/51/24/005. Epub 2006 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验