Suppr超能文献

使用人工神经网络预测睡眠呼吸暂停中的有效持续气道正压通气

Predicting effective continuous positive airway pressure in sleep apnea using an artificial neural network.

作者信息

El Solh Ali A, Aldik Zaher, Alnabhan Moutaz, Grant Brydon

机构信息

Western New York Respiratory Research Center, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University at Buffalo, School of Medicine and Biomedical Sciences, 462 Grider Street, Buffalo, NY, USA.

出版信息

Sleep Med. 2007 Aug;8(5):471-7. doi: 10.1016/j.sleep.2006.09.005. Epub 2007 May 18.

Abstract

BACKGROUND

Mathematical formulas have been less than adequate in assessing the optimal continuous positive airway pressure (CPAP) level in patients with obstructive sleep apnea (OSA). The objectives of the study were (1) to develop an artificial neural network (ANN) using demographic and anthropometric information to predict optimal CPAP level based on an overnight titration study and (2) to compare the predicted pressures derived from the ANN to the pressures computed from a previously described regression equation.

METHODS

A general regression neural network was used to develop the predictive model. The derivation cohort included 311 consecutive patients who underwent CPAP titration at a University-affiliated Sleep Center. The model was validated subsequently on 98 participants from a private sleep laboratory.

RESULTS

The correlation coefficients between the optimal pressure determined by the titration study and the predicted pressure by the ANN were 0.86 (95% confidence interval [CI] 0.83-0.88; p<0.001) for the derivation cohort and 0.85 (95% CI 0.78-0.9; p<0.001) for the validation cohort, respectively. Whereas there was no significant difference between the optimal pressure obtained during overnight polysomnography and the predicted pressure estimated by the ANN (p=0.4), the estimated pressure derived from the regression equation underestimated the optimal pressure in both the derivation and the validation group, respectively.

CONCLUSION

The optimal CPAP level predicted by the ANN provides a more accurate assessment of the pressure derived from the historic regression equation.

摘要

背景

数学公式在评估阻塞性睡眠呼吸暂停(OSA)患者的最佳持续气道正压通气(CPAP)水平方面并不充分。本研究的目的是:(1)利用人口统计学和人体测量学信息开发一个人工神经网络(ANN),基于夜间滴定研究预测最佳CPAP水平;(2)将ANN预测的压力与先前描述的回归方程计算得出的压力进行比较。

方法

使用广义回归神经网络开发预测模型。推导队列包括311名在大学附属睡眠中心接受CPAP滴定的连续患者。随后在一个私人睡眠实验室的98名参与者中对该模型进行了验证。

结果

滴定研究确定的最佳压力与ANN预测压力之间的相关系数,推导队列分别为0.86(95%置信区间[CI]0.83 - 0.88;p<0.001),验证队列分别为0.85(95%CI 0.78 - 0.9;p<0.001)。虽然夜间多导睡眠图期间获得的最佳压力与ANN估计的预测压力之间无显著差异(p = 0.4),但回归方程得出的估计压力在推导组和验证组中均低估了最佳压力。

结论

ANN预测的最佳CPAP水平比历史回归方程得出的压力评估更准确。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验