Suppr超能文献

用于手术生活质量研究的36项简短健康调查问卷数据的行为与分析

Behavior and analysis of 36-item Short-Form Health Survey data for surgical quality-of-life research.

作者信息

Velanovich Vic

机构信息

Division of General Surgery, Mailstop K-8, Henry Ford Hospital, Detroit, MI 48202, USA.

出版信息

Arch Surg. 2007 May;142(5):473-7; discussion 478. doi: 10.1001/archsurg.142.5.473.

Abstract

HYPOTHESIS

Data from the 36-Item Short-Form Health Survey (SF-36) do not follow a normal distribution and should not be analyzed using parametric techniques. A novel type of analysis, top-box analysis, may add to the interpretation of these data.

DESIGN

Review of SF-36 data from preoperative and postoperative patients.

SETTING

Tertiary care hospital and clinic.

PATIENTS

One thousand randomly selected preoperative and postoperative patients with a variety of surgical diseases completed the SF-36 (8 domains: physical functioning, role physical, role emotional, bodily pain, vitality, mental health, social functioning, and general health). The best possible score was 100; the worst possible score, 0. One item assessed "health transition." The best score was 1; the worst score, 5. The health transition item and each domain were analyzed for mean with standard deviation, median, mode skewness, kurtosis, and normality. A "top-box" assessment was done by determining the frequency of patients scoring 100 in each domain or 1 in the health transition item. In addition, preoperative and postoperative scores were compared.

RESULTS

The results for all 1000 questionnaires demonstrated that none of the domains had data that followed a normal distribution. The means, medians, and modes were different. Five domains had the mode and median at the top box.

CONCLUSIONS

The SF-36 data did not follow a normal distribution in any of the domains. Data were always skewed to the left, with means, medians, and modes different. These data need to be statistically analyzed using nonparametric techniques. Of the 8 domains, 5 had a significant frequency of top-box scores, which also were the domains in which the mode was at 100, implying that change in top-box score may be an informative method of presenting change in SF-36 data.

摘要

假设

36项简明健康状况调查(SF - 36)的数据不呈正态分布,不应使用参数技术进行分析。一种新型分析方法,即顶格分析,可能有助于对这些数据的解读。

设计

回顾术前和术后患者的SF - 36数据。

地点

三级护理医院和诊所。

患者

一千名随机选取的患有各种外科疾病的术前和术后患者完成了SF - 36调查(8个领域:身体功能、身体角色、情绪角色、身体疼痛、活力、心理健康、社会功能和总体健康)。最佳可能分数为100分;最差可能分数为0分。有一项评估“健康转变”。最佳分数为1分;最差分数为5分。对健康转变项目和每个领域分析了均值、标准差、中位数、众数、偏度、峰度和正态性。通过确定每个领域得100分或健康转变项目得1分的患者频率进行“顶格”评估。此外,比较了术前和术后得分。

结果

所有1000份问卷的结果表明,没有一个领域的数据呈正态分布。均值、中位数和众数各不相同。五个领域的众数和中位数处于顶格。

结论

SF - 36数据在任何领域都不呈正态分布。数据总是向左偏态,均值、中位数和众数不同。这些数据需要使用非参数技术进行统计分析。在8个领域中,有5个领域顶格分数的频率显著,这些领域也是众数为100的领域,这意味着顶格分数的变化可能是呈现SF - 36数据变化的一种有用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验